Course detail

Advanced Methods of Decission

FP-IpmrKAcad. year: 2020/2021

The content of the subject is to make students familiar with the methods of analyses and simulation techniques (fuzzy logic, artificial neural networks, and genetic algorithms) by the way of explanation of the principles of these theories and their resulting applications in managerial practice.

Learning outcomes of the course unit

The obtained knowledge and skills of the subject will enable the graduates the top and modern access in the processes of analyses and simulation in the national economy and private sector, organizations, firms, companies, banks, etc., especially in managerial, but also in economical and financial sphere.

Prerequisites

Not applicable.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

DOSTÁL, P. Pokročilé metody analýz a modelování v podnikatelství a veřejné správě, CERM, 2008, 430s, ISBN 978-80-7204-605-8.
DOSTÁL, P.: Advanced Decision making in Business and Public Services, Akademické nakladatelství CERM, 2011 Brno,ISBN 978-80-7204-747-5.
ALTROCK,C. Fuzzy Logic &Neurofuzzy, Book & Cd Edition, 1996, 375 s., ISBN 0-13-591512-0
DOSTÁL, P, RAIS, K., SOJKA, Z.: Pokročilé metody manažerského rozhodování, Praha Grada, 2005., ISBN 80-247-1338-1.
GATELY, E. Neural Network for Financial Forecasting, John Wiley & Sons Inc., 1996, 169 s., ISBN 0-471-11212-7
THE MATHWORKS. MATLAB – User’s Guide, The MathWorks, Inc., 2011.
DAVIS,L. Handbook of Genetic Algorithms, Int. Thomson Com. Press, 1991, 385 s., ISBN 1-850-32825-0
PETERS, E. Fractal Market Analysis, John Wiley & Sons Inc., 1994, 315 s., SBN 0-471-58524-6
REBEIRO,R.R., ZIMMERMANN,H.J. Soft Computing in Fin. Engineering, Spring Verlag Comp.,1999,509s.,ISBN3-7908-1173-4.
JANÍČEK, P. Systémové pojetí vybraných oborů pro techniky, CERM, Brno, 2007, 1234 s., ISBN 978-80-7204-554-9.

Planned learning activities and teaching methods

The course contains lectures that explain basic principles, problems and methodology of the discipline, and exercises that promote the practical knowledge of the subject presented in the lectures.

Assesment methods and criteria linked to learning outcomes

The credit will be granted in case of an active participation in trainings and handing in the final assignment, in case of need the written test. The work will range approximately from 8 to 12 pages concentrating on individual problem from practice leading to solution with the help of theory of fuzzy logic, artificial neural network or genetic algorithms.
The exam will be classified according ECTS. The way of implementation is in the form of test with in the range 0-20 points. A-20-19;B18-17;C16-15;D14-13;E12-;F10-0.

Language of instruction

Czech

Work placements

Not applicable.

Course curriculum

1. Introduction
2. Fuzzy logic - theory
3. Fuzzy logic + application - Excel
4. Fuzzy logic - MATLAB application
5. Artificial neural networks - theory
6. Artificial neural networks + MATLAB applications
7. Genetic algorithms - theory
8. Genetic algorithms + MATLAB applications
9. Chaos theory
10. Datamining
11. Prediction, capital market
12. Production and risk management
13. Decision making

Aims

The aim of the course is to get acquainted with some advanced and non-standard methods of analysis and simulation techniques in economy and finance by the method of explanation of these theories, to become familiar with these theories and their use.

1. Introduction
2. Fuzzy logic - theory
3. Fuzzy logic + application - Excel
4. Fuzzy logic - MATLAB application
5. Artificial neural networks - theory
6. Artificial neural networks + MATLAB applications
7. Genetic algorithms - theory
8. Genetic algorithms + MATLAB applications
9. Chaos theory
10. Datamining
11. Prediction, capital market
12. Production and risk management
13. Decision making

Specification of controlled education, way of implementation and compensation for absences

The participation in lectures is not checked. The participation in trainings is compulsory and is systematically checked. The students are supposed to excuse for their absence. The teacher judges the reason of excuse. The way of substitution of a missed training will be set by the teacher individually.

Classification of course in study plans

  • Programme MGR-IM-KS Master's, 1. year of study, summer semester, 6 credits, compulsory

Type of course unit

 

Guided consultation in combined form of studies

20 hours, optionally

Teacher / Lecturer