Course detail

Dynamics of Electric Machines

FSI-RDMAcad. year: 2020/2021

Basic concepts of electromechanical energy conversion. Electromechanical systems with multiple exciting coils, with linear and rotary motion, dynamic equations of the electromechanical system. The mathematical models of asynchronous machine, synchronous machine, and reluctant machine.

Learning outcomes of the course unit

Subject graduate should have been able:
- explain principle of electromechanical energy conversion
- derive expression of force and torque in linear and nonlinear system with linear and rotary movement and solve simple exaples,
- form dynamic equations of any electromagnetic system,
- form dynamic equations of an induction and a synchronolus machine
- describe and explain general theory of electric machines and form dynamic equations,
- explain transformation of coordinates,
- form dynamic equations of induction, synchronous and DC machines and solve electric machines transients using Matlab Simulink.


Student by měl být schopen: - vysvětlit základní zákony elektromagnetismu, řešit stejnosměrné a střídavé obvody se soustředěnými parametry a obvody magnetické, - derivovat funkce jedné a více proměnných včetně derivací parciálních, - integrovat funkce jedné, - řešit přechodné děje v lineárních a nelineárních obvodech v programu MATLAB Simulink, - vysvětlit princip činnosti a vlastnosti elektromagnetu, transformátoru, asynchronního stroje, synchronního stroje a stejnosměrného stroje.


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Chee-Mun Ong: Dynamic Simulation of Electric Machinery
Majmudar, H.:Elektromechanical Enargy Conversion,England Allynana Bacon
Měřička, Zoubek:Obecná teorie elektrického stroje,SNTL Praha

Planned learning activities and teaching methods

The basic principles and theories of the subject Dynamics of Electric Machines are taught in lectures. Exercises are focused on practical mastery of the subject matter.

Assesment methods and criteria linked to learning outcomes

Three written tests of five points each.
Five mini projects of one point each.

Credit is conditional on achieving at least eight points from written tests and submission of five mini-projects.

The written final exam is for eighty points.

In total, it is possible to achieve one hundred points.

To pass the exam, the student must have been awarded a credit and have a total of at least fifty points.

Language of instruction


Work placements

Not applicable.


Dát studentům základní znalosti z elektromechanické přeměny energie, naučit je sestavit pohybové rovnice elektromechanických soustav a ukázat možnosti jejich řešení. Seznámit studenty s problematikou matematického popisu elektrických strojů a porozumění jejich funkčnímu principu.

Specification of controlled education, way of implementation and compensation for absences

Attendance at lectures is obligatory.
Attendance at practical training is obligatory.

Classification of course in study plans

  • Programme N-MET-P Master's, 1. year of study, winter semester, 4 credits, compulsory

Type of course unit



26 hours, compulsory

Teacher / Lecturer


1. Introduction to electromagnetic circuits.
2. A static set of two or more coils, a mathematical model of a transformer.
3. Equivalent circuits of the transformer and their transformations. Identification of electrical parameters.
4. Generation of force and torque in electromagnetic circuits, a mathematical model of an electromagnet.
5. Moving set of two or more coils, a mathematical model of a resolver.
6. A mathematical model of a DC machine.
7. A mathematical model of an induction machine in natural coordinates.
8. Transformation of coordinates.
9. A mathematical model of an induction machine in general rotating coordinates.
10. Analysis of the steady-state and dynamic operation of the induction machine.
11. A mathematical model of a synchronous induction
12. Analysis of the steady-state and dynamic operation of the synchronous machine.
13. A mathematical model of a reluctant machine.


26 hours, optionally

Teacher / Lecturer


1. Calculations of electromagnetic circuits.
2. Calculations of electromagnetic circuits.
3. Calculations of electromagnetic circuits.
4. Calculations of electromagnetic circuits.
5. Measurement and simulation of the transformer.
6. Calculation and simulation of the electromagnet.
7. Simulation of the resolver.
8. Simulation of the induction machine.
9. Simulation of the induction machine.
10. Simulation of the induction machine.
11. Simulation of the synchronous machine.
12. Simulation of the synchronous machine.
13. Simulation of the reluctant machine.