Course detail

Virtual Prototypes

FSI-QVPAcad. year: 2020/2021

Virtual prototypes significantly reduce the time for motor vehicles development. Prototypes enable to prove and optimize vehicle properties before a real prototype is made . Students in this course will be made familiar with theoretical but also practical knowledge in this field. Software ADAMS was chosen for the practical part of the course, as it is one of the most widely used software for vehicle dynamics analysis.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

Students will have a clear idea of which problems are possible to solve with the multi-body software, what data are necessary, what outputs they are able to get. Students will also acquire the necessary knowledge to enable them to independently create multi-body models using software tools.

Prerequisites

Matrix calculus. Basic knowledge of numerical mathematics and technical mechanics, kinematics, dynamics.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical modeling in multi-body software.

Assesment methods and criteria linked to learning outcomes

The course-unit credit requirements:
Mastering fundaments of lectured problems and practical realizations of computations using computer technology and software tools, knowledge applying is examined on assigned problems, individual elaboration of the assigned tasks without fundamental deficits. Continuous evaluation is made at seminars.
Examination:
Examination is based on evaluation of knowledge of fundamental problems, ways of solutions and its applications in exercises.
The exam consists of a written part (test) and an oral part. Final evaluation consists of: 1. Evaluation of the work on seminars (elaborated tasks). 2. Result of the writing part of the exam (test). 3. Result of the oral part of the exam.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of the course is to make students familiar with theoretical and practical knowledge of multi-body software. They will learn of multi-body software and its development trends.

Specification of controlled education, way of implementation and compensation for absences

Attendance at seminars is obligatory, checked by a teacher. The way of compensation of absence is solved individually with a course provider.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

STEJSKAL, V., VALÁŠEK, M. Kinematics and dynamics of machinery. Marcel Dekker, Inc. 1996. ISBN 0-8247-9731-0 (EN)
BLUNDELL, M., HARTY, D. The multibody systems approach to vehicle dynamics. Second edition. Boston, MA: Elsevier, 2015. ISBN 978-008-0994-253. (EN)
SCHIEHLEN, W. (ed.) Multibody Systems Handbook. Berlin: Springer-Verlag, 1990 (EN)
ADAMS/View. [on-line Adams software manual] MSC.Software Corporation. (EN)
ADAMS/Solver. [on-line Adams software manual] MSC.Software Corporation. (EN)

Recommended reading

Getting Started Using ADAMS/View. [on-line Adams software tutorial] MSC.Software Corporation. (EN)
STEJSKAL, V., VALÁŠEK, M. Kinematics and dynamics of machinery. Marcel Dekker, Inc. 1996. ISBN 0-8247-9731-0 (EN)
SCHIEHLEN, W. (ed.) Dynamics of High-Speed Vehicles. Wien-New York: Springer-Verelag, 1982 (EN)
BLUNDELL, M., HARTY, D. The multibody systems approach to vehicle dynamics. Second edition. Boston, MA: Elsevier, 2015. ISBN 978-008-0994-253. (EN)
PACEJKA, Hans B. Tire and vehicle dynamics. Third Edition. Amsterdam: Elsevier, 2012. ISBN 9780080970165. (EN)
Road vehicles - Vehicle dynamics and road-holding ability – Vocabulary, ISO8855 : 2011 (E/F), International Organization for Standardization, Switzerland (EN)

eLearning

Classification of course in study plans

  • Programme N-ADI-P Master's, 1. year of study, summer semester, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

1. Introduction (multi-body (MB) formalism and other technologies)
2. Basic tapes of models
3. Basic elements of MB system simulation software and modelling process
4. Reference frames, location and orientations methods
5. Closed kinematic chains - Redundant coordinate problem
6. Numerical Solution - Nonlinear system of Equations and System of ordinary Differential Equations
7. Number of Degrees of Freedom - Impact on Modelling
8. Analysis
9. Software Solution and new trends
10. Special Modelling Elements (Tyres)

Computer-assisted exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

1. Sample problem - Latch Design Problem (1st – 7th week)
Students solve problem under direct guidance of lecturer and have at disposal tutorial
2. Individual problems solving - Five Link Suspension (8th – 12th week)
Students solve problem individually and could consult with lecturer.
3. Overview of ADAMS modules (13th week)

eLearning