Course detail
Mathematics 5 (M)
FAST-CA003Acad. year: 2020/2021
Interpolation and approximation of functions. Numerical solution of algebraic equations and their systems. Numerical derivatives and quadrature. Variance analysis, regression analysis. Numerical solution of stationary and non-stationary boundary and initial problems for differential equations with applications to civil engineering. Direct, sensitivity and inverse problems.
Supervisor
Department
Institute of Mathematics and Descriptive Geometry (MAT)
Learning outcomes of the course unit
Following the aim of the course, students will receive the basic orientaion in numerical and statistical methods needed in material engineering and in related engineering applications.
Prerequisites
Basic knowledge of numerical mathematics, probability and statistics, applied to technical problems.
Co-requisites
Not applicable.
Recommended optional programme components
Not applicable.
Recommended or required reading
Not applicable.
Planned learning activities and teaching methods
Not applicable.
Assesment methods and criteria linked to learning outcomes
Not applicable.
Language of instruction
Czech
Work placements
Not applicable.
Course curriculum
1. Mathematical modelling. Deterministic and stochastic models. Errors in numerice calculations.
2. Lagrangean and Hermitean interpolation of functions. Interpolation functions, especially polynomials and splines.
3. Numerical solution of linear and nonlinear algebraic equations and their systems.
4. Numerical derivatives and quadrature.
5. Formulation and numerical solution of direct problems with differential and integral equations.
6. Finite difference, element and volume methods for stationary problems.
7. Methods of lines and discretization in time (Rothe sequences) for nonstationary problems.
8. Statistical tests, variance analysis, fuzzy models.
9. Linear regression analysis. Least squares method.
10. Nonlinear regression analysis.
11. Sensitivity analysis. Application to uncertainty transfer and estimates of durability of building structures.
12. Inverse analysis. Application to determination of material parameters from experiments.
13. Application to significant engineering problems.
Aims
Students will obtain the basic knowledge of numerical mathematics, probability and statistics, applied to technical problems, especially from material engineering.
Specification of controlled education, way of implementation and compensation for absences
Extent and forms are specified by guarantor’s regulation updated for every academic year.
Classification of course in study plans
- Programme N-K-C-SI (N) Master's
branch M , 1. year of study, winter semester, 4 credits, compulsory
- Programme N-P-E-SI (N) Master's
branch M , 1. year of study, winter semester, 4 credits, compulsory
- Programme N-P-C-SI (N) Master's
branch M , 1. year of study, winter semester, 4 credits, compulsory