Course detail

Geographical Information Systems

FAST-HE15Acad. year: 2020/2021

Geographical information system (GIS),its objective, function and structure. relation between GISand CAD. geographic object, information and database systems, modern methods of works with data (genetic algorithm. neural networks). Variou forms of data, their relations (homeomorfismus). Basic characteristics of geographical data, topology in GIS. Digital terrain model , organization of DTM data in GIS. Standatds,"openGIS", analysis of data. Principles of GIS design. ZABAGD, DMÚ 25, main GIS.


Institute of Geodesy (GED)

Learning outcomes of the course unit

Basis knowledge needed for GIS design.
Ability to create a GIS project in Geomedia Intergraph and Arc/Info Systems.


computer skills, basic databases, statistics, applied mathematics


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Tuček, Ján: Geografické informační systémy. Principy a praxe.. Computer Press, 1998. (CS)
Albrecht, Joachim: Key Concepts & Techniques in GIS. SAGE publications, 2007. (EN)
Rana, Sanjay: Topological Data Structures for Surfaces. John Viley & Sons Ltd., 2004. (EN)
Wang, Fahui: Quantitative Methods and Applications in GIS.. Taylor & Francis Group., 2006. (EN)
Charvát, K. - Kocáb, M. - Konečný, M. - Kubíček, P.: Geografická data v informační společnosti. VÚGTK Zdiby, 2007. (CS)

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Language of instruction


Work placements

Not applicable.

Course curriculum

1. Introduction, definition of GIS, development, relations, geographical object, homeomorphism.
2. Information systems: types, design methods
3. Overview of database systems. relational algebra, SQL, spatial indexes and queries, data mining (cluster analysis, artificial neural networks, genetic algorithms)
4. Basic of graph theory, selected tasks on graph structures
5. Topology (mathematics, pragmatic - DIGEST standard)
6. Data models in GIS (raster, vector, matrix data)
7. Digital model of Terrain (raster, vector, TIN)
8. Data capture, metadata, data quolity and accuracy - standards
9. Map algebra: model, operators, functions, tasks
10. Spatial analysis: history, objective, types (measured and classify functions, overlay, focal functions, join functions)
11. Current trends and developments of GIS


Understanding of information systems and databases with connection to spatial identification.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Classification of course in study plans

  • Programme N-P-C-GK Master's

    branch GD , 2. year of study, winter semester, 5 credits, compulsory
    branch GD , 2. year of study, winter semester, 5 credits, compulsory

Type of course unit



26 hours, optionally

Teacher / Lecturer


26 hours, compulsory

Teacher / Lecturer