Course detail

Measure Engineering and Simulating

FAST-0N7Acad. year: 2020/2021

Introduction into transportation structures problems, hygiene standards and regulations. Aims and physical principles of measurements and devices. Types of measuring sensors, principles of electronical measurements of physical quantities.
Multi-channel measurements, measuring software, principles of data recorded elaboration and proportional dependencies on various quantities. Measurements of mechanical and fatigue material properties within transportation structures, measurements, analyses and modelling of mechanical exertion, static and dynamic phenomena. Measuring, modelling and analysis of temperature and thermal fields.
Measurements and analyses of noise and trembling. Comparison of measuring and modelling techniques. Prediction of noise levels from road, rail transport and air transport. Modal analyses, comparison of measuring and modelling techniques. Analyses of measurements. Project and analyses of anti-noise and anti-vibration measurements. Rail defects – measurement, analysis, classification. Track recording cars.
Atmosphere contamination originate from road and railway transport, measurement and computation of emission. Roughness measurement, measurement of longitudinal and lateral deformations of road surface, recording cars for alignment measurement and for measurement of road surface properties. Measurement of road bearing capacity, modelling and bearing estimation, complex measurement utilisation for maintenance and renewal of roads.

Language of instruction

Czech

Number of ECTS credits

5

Department

Institute of Railway Structures and Constructions (ZEL)

Learning outcomes of the course unit

Not applicable.

Prerequisites

Railway substructure, subdivision and construction of rail substructure and its construction layers, construction and shape of earth formation
Railway superstructure and modern railway structure design, interaction between railway vehicle and track, static track design, switches, crossings and turnouts.
Physics, vibrations, proper vibrations, energy of a harmonics vibrations, damped vibrations, forced vibrations, addition of vibrations
Examination of the response of structures subjected to excitation, bases of the vibration theory, frequency domain analysis.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Course curriculum

1. Introduction into transportation structures problems, hygiene standards and regulations. 2. Aims and physical principles of measurements and devices.
3. Types of measuring sensors, principles of electronical measurements of physical quantities.
4. Multi-channel measurements, measuring software, principles of data recorded elaboration and proportional dependencies on various quantities.
5. Measurements of mechanical and fatigue material properties within transportation structures, measurements, analyses and modelling of mechanical exertion, static and dynamic phenomena.
6. Measuring, modelling and analysis of temperature and thermal fields.
7. Measurements and analyses of noise and trembling. Comparison of measuring and modelling techniques. Prediction of noise levels from road, rail transport and air transport.
8. Modal analyses, comparison of measuring and modelling techniques. Analyses of measurements.
9. Design and analyses of anti-noise and anti-vibration measurements.
10. Rail defects – measurement, analysis, classification. Track recording cars.
11. Atmosphere contamination originate from road and railway transport, measurement and computation of emission.
12. Roughness measurement, measurement of longitudinal and lateral deformations of road surface, recording cars for alignment measurement and for measurement of road surface properties.
13. Measurement of road bearing capacity, modelling and bearing estimation, complex measurement utilisation for maintenance and renewal of roads.

Work placements

Not applicable.

Aims

The objective of the subject is to introduce students to the problems of hygiene standards and regulations, measurements and analyses of noise and trembling measurements, design and analyses of anti-noise and anti-vibration structures, environment contamination originate from road and railway transport and to practise acquires knowledge and skills.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Smutný, J.: Měřící technika a modelování. CERM 1998

Recommended reading

Not applicable.

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Exercise

26 hours, compulsory

Teacher / Lecturer