Course detail

Intelligent Systems

FIT-ISDAcad. year: 2020/2021

Tolerance of imprecision and uncertainty as main attribute of ISY. Intelligent systems based on combinations of several theories - neural networks, fuzzy sets, rough sets and genetic algorithms: expert systems, intelligent information systems, machine translation systems, intelligent sensor systems, intelligent control systems, intelligent robotic systems.

Topics for the SDE (state doctoral exam)

  1. Fuzzy expert systems
  2. Knowledge engineering using soft-computing
  3. Intelligent sensor systems
  4. Neural networks in intelligent systems
  5. Fuzzy control systems
  6. Neuro-fuzzy control systems
  7. Rough sets in intelligent systems
  8. Genetic algorithms in intelligent systems
  9. Inteligent robots
  10. Navigation of mobile robots

Learning outcomes of the course unit

Students acquire knowledge of principles of intelligent systems and so they will be able to design these systems for solving of various practical problems.
A detailed overview of the current state of intelligent systems and the ability to use the acquired knowledge in their own research.

Prerequisites

Basic knowledge of artificial intelligence in a scope of Fundamentals of Artificial Intelligence course of current study program at FIT. 

Co-requisites

None.

Recommended optional programme components

Not applicable.

Recommended or required reading

Mitchell, H. B.: Multi-Sensor Data Fusion, Springer-Verlag Berlin Heidelberg 2007, ISBN 978-3-540-71463-7
Munakata,T.: Fundamentals of the New Artificial Intelligence, Springer, 2008, ISBN 978-1-84628-838-8
Shi, Z.: Advanced Artificial Intelligence, World Scientific Publishing Co. Pte. Ltd., 2011, ISBN-13 978-981-4291-34-7
Iba, H., Noman, N.: New Frontier in Evolutionary Algorithms, Imperial College Press, 2012, ISBN-13 978-1-84816-681-3
Bramer, M.: Principles of Data Mining, Second edition, Springer-Verlag London 2013, ISBN 978-1-4471-4883-8
Fraden, J.: Handbook of Modern Sensors, Springer  Springer International Publishing, 2016, ISBN 978-3-319-19302-1
Kruse, R., Borgelt, Ch., Braune, Ch., Mostaghim, S., Steinbrecher, M.:Computational Intelligence - A Methodological Introduction, Second Edition Springer-Verlag London, 2016, ISBN 978-1-4471-7294-9
Raza, M. S., Qamar, U.: Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications, Springer Nature, 2017, ISBN 978-981-10-4964-4
Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C., Rizzi, A., Jenssen, R.:Recurrent Neural Networks for Short-Term Load Forecasting - An Overview and Comparative Analysis, SpringerBriefs in Computer Science, 2017, ISBN 978-3-319-70337-4
Lynch, K. M., Park, F,C,: Modern Robotics. Mechanics, Planning, and Control, Cambridge U. Press, 2017, ISBN: 9781107156302

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Group consultations once every two weeks.
Exam prerequisites:
The course has no credit.

Language of instruction

Czech, English

Work placements

Not applicable.

Aims

To give the students the knowledge of intelligent systems design (control, production, etc.) based on combinations of theories of neural networks, fuzzy sets, rough sets and genetic algorithms.

Specification of controlled education, way of implementation and compensation for absences

Defenses of projects, oral final exam. Replacement of missed defense of the project in agreement with the subject guarantor.

Classification of course in study plans

  • Programme VTI-DR-4 Doctoral

    branch DVI4 , any year of study, summer semester, 0 credits, elective

  • Programme VTI-DR-4 Doctoral

    branch DVI4 , any year of study, summer semester, 0 credits, elective

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

  1. Introduction, soft computing and ISY
  2. Expert systems
  3. Intelligent information systems
  4. Machine translation systems
  5. Surrounding environment perception, intelligent sensor systems
  6. Analysis of sensor data, environment model design
  7. Planning of given tasks accomplishments
  8. Control systems with neural networks
  9. Fuzzy control systems
  10. Neuro-fuzzy systems
  11. Utilization of rough sets and genetic algorithms in ISY
  12. Intelligent robotic systems
  13. Navigation of mobile robots

Guided consultation in combined form of studies

26 hours, optionally

Teacher / Lecturer

Project

26 hours, compulsory

Teacher / Lecturer

Syllabus

  • Two individual projects - designs of intelligent systems for solving some practical problems.