Course detail

Concrete structures 2

FAST-BL009Acad. year: 2019/2020

Reinforced concrete monolithic two-way slabs locally supported.
Precast structures – halls, skeletons, buildings from flat and spatial units. Type of units. Arrangement and details of connections. Calculation of precast units and structures, joint members, anchorages and mounting lugs. Spatial rigidity. Special units and structures. Design and application of composite structures on constructions of structural engineering.
Selected structures of civil engineering – storages, tank. Design principles of prestressed concrete members design.

Department

Institute of Concrete and Masonry Structures (BZK)

Learning outcomes of the course unit

A student gains these knowledge and skills:
• Understanding of the specific behaviour and design of precast concrete structures.
• Understanding of the behaviour of prestressed concrete structures.
• Basic principles of design of selected civil engineering structures.

Prerequisites

structural mechanics, theory of elasticity, load, design of concrete members, design of framed and flat concrete structures

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Language of instruction

Czech, English

Work placements

Not applicable.

Course curriculum

1.-2. Monolithic reinforced concrete slabs locally supported – structural arrangement, static action, elementary calculation of internal forces, dimensioning of bending. Extrusion of a slab, diferent types of heads. Serviceability limit states. Reinforcing.
3.-4. Precast structures – halls systems, structural arrangement, load. Members of precast halls, joints, application. Space stiffness. Tie and tieless halls – calculation. Design and reinforcing of members and their joints.
5.-6. Multi-storey skeletons, structural arrangement, members and their joints. Elementary principles of calculation. Influence of joints rigidity on skeletons behaviour. Load-bearing capacity of joints. Ceiling structures action. Stability and stiffness with and without reinforcing members.
7. Panel systems, structural solution, calculated schemes. Dimensioning of individual element and their connections.
8. Design of panel buildings stiffness. Calculation of reinforcing elements. Space systems.
9. Special elements (panels) and structures. Structural solution and principles of design of precast building foundations.
10. Composite structures. Elements in during manufacturing, transport and assembly. Anchorages and mounting lugs. Assembling stage.
11.-12. Principles of gesign of storage tanks (bunkers and silos) and reservoirs – loading, static solution, dimensioning and reinforcing.
13. Design of prestressed concrete members – base, materials, prestressing and its changes, design principles.

Aims

Understanding of the specific behaviour of precast concrete structures. Design of precast concrete structures.
Understanding of the behaviour of prestressed concrete structures.
Basic principles of design of selected structures for civil engineering together.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Classification of course in study plans

  • Programme B-P-C-SI (N) Bachelor's

    branch S , 4. year of study, winter semester, 5 credits, compulsory

  • Programme B-K-C-SI (N) Bachelor's

    branch S , 4. year of study, winter semester, 5 credits, compulsory

  • Programme B-P-E-SI (N) Bachelor's

    branch S , 4. year of study, winter semester, 5 credits, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

seminars

26 hours, compulsory

Teacher / Lecturer

eLearning