Course detail

Theory of Metallurgical Processes

FSI-HPCAcad. year: 2019/2020

Students are made familiar with the physical and chemical fundamentals of metallurgical processes to an extent that enables preparing mathematical models of these processes and controlling them purposefully. Derivation of fundamental relations of thermodynamic activities and partial molar enthalpies of the components of molten alloy. Criterial functions used in PC modelling of metallurgical processes. Creating models of the processes inside alloys and at the interface of alloy and in surrounding environment. Modelling of selected processes in the Mathcad program environment.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

In the course, students will learn how to analyse the progress or equilibrium of specific metallurgical processes using mathematical models. They will also learn how to make use of the Mathcad program environment when modelling basic metallurgical processes.

Prerequisites

Students must have the knowledge of inorganic chemistry (qualitative and quantitative aspects of chemical reactions and their energetics), thermomechanics (1st law of thermodynamics - heat, work, latent energy, enthalpy. 2nd law of thermodynamics - entropy), principles of thinking in algorithms, structured approach to problem solutions, and working with PC under the Windows operating system.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

The course is taught through lectures explaining the basic principles and theory of the discipline. Exercises are focused on practical topics presented in lectures.

Assesment methods and criteria linked to learning outcomes

Conditions of awarding the course-unit credit: participation in exercises. Examination: the knowledge of fundamental relations and, above all, the ability to apply these relations are tested. It is a written and oral examination.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The objective of the course is to make students familiar with the thermodynamic fundamentals of metallurgical processes so that they can apply this knowledge when creating mathematical models of these processes, pursuing purposeful management based on the prediction of the progress or equilibrium of the process.

Specification of controlled education, way of implementation and compensation for absences

Attendance in lectures is recommended, attendance in exercises is obligatory.
Attending at the exercises is required, being checked by the leader of practicals. In the case of absence from exercises, the leader assigns a topic for independent written work.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Hae-Geon Lee: Chemical Thermodynamics for Metals and Materials,1st ed. London: Imperial College Press. 1999
Turkdogan,E.T.: Fundamentals of Steelmaking, 1st ed. London: The Institute of Materials. 1996.
Moore,W.J.: Physical Chemistry, 4th ed. New Jersey: Prentice-Hall, Inc. 1972
Shamsuddin, M: Physical Chemistry of metallurgical Processes. Hoboken, New Jersey, USA: John Wiley & Sohns, 2016. (CS)

Recommended reading

Myslivec,T.: Fyzikálně chemické základy ocelářství. 2.vyd. Praha: SNTL. 1971
Komorová,L., Imriš,I.: Termodynamika v hutníctve. 1. vyd. Bratislava: Alfa. 1989
Brdička,R., Dvořák,J.: Základy fysikální chemie. 2. vyd. Praha: Academia. 1977

Classification of course in study plans

  • Programme M2I-P Master's

    branch M-SLE , 1. year of study, winter semester, compulsory
    branch M-SLE , 1. year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

1. Equilibrium and thermodynamic probability of processes
2. Ideal solution, the Gibbs energy of components
3. Real solutions, chemical potential of components
4. Vapour pressure of components of real solutions, activity of components
5. Standard state of pure substance and 1% solution
6. The Van Hoff reaction isotherm
7. Thermal dissociation of gas compounds, equilibrium gas pressure
8. Oxygen dissolution in melts, deoxidation
9. Dissolution of nitrogen and hydrogen in melts. The Sieverts law.
10. Thermodynamics and kinetics of degassing
11. Reactions between the melt and refractories
12. The molecule and ion theory of slag
13. Equilibrium data on liquid steel- slag reactions of oxygen, phosphorus and sulphur.

Computer-assisted exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

1. Mathcad program environment, calculation of concentrations.
2. The Boudouard model and diagram.
3. Decomposition of limestone, calculation of decomposition temperature.
4. Analysis of the progress of redox reactions.
5. Calculation of metal vapour pressure, temperature dependence.
6. Calculation of activity coefficients in multi-component alloys.
7. Maximum solubility of oxygen in iron.
8. Calculation of equilibrium oxygen pressure of oxides.
9. Analysis of oxygen solution in Fe-Al-O alloys.
10. Analysis of carbon/oxide equilibrium in steel.
11. Dissolution of nitrogen in Fe and steel.
12. Reactions between the melt and refractories.
13. The oxygen transfer from slag to iron.