Course detail

Supramolecular Chemistry

FCH-MCO_SKOAcad. year: 2019/2020

The course is divided into three blocks. The first block focuses on the general basics and theoretical background of supramolecular chemistry, concepts and terminology and on the key intermolecular interactions. In the second block, supramolecular chemistry of living organisms is illustrated on representative natural systems. Besides, most important synthetic supramolecular systems are introduced. Final block summarizes analythical methods, utilized in supramolecular chemistry, and concepts of supramolecular design.

analytical methods, theory of supramolecular design, supramolecular devices.

Learning outcomes of the course unit

Basic definitions and concepts in supramolecular chemistry.
Overview of fundamental interactions and their applications in living organisms and in complexation of compounds.
New trends in designing supramolecular complexes and devices

Prerequisites

Organic chemistry, Biochemistry and Physical chemistry knowledge.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Steed J. W., Atwood J. L.: Supramolecular chemistry. John Wiley & Sons Ltd, Chichester 2000. (CS)
Lehn J. - M.: Supramolecular chemistry. Wiley-VCH, Weinheim 1995. (CS)
Ariga K., Kunitake T.: Supramolecular chemistry: fundamentals and applications: advanced textbook. Springer, Berlin 2005. (CS)
Schalley, C.: Analytical Methods in Supramolecular Chemistry. Wiley-VCH Verlag 2007 (CS)
Schneider, H.J.: Application of supramolecular chemistry, CRC Press 2012. (CS)

Planned learning activities and teaching methods

The course uses teaching methods in form of Lecture - 2 teaching hours per week. The e-learning system (LMS Moodle) is available to teachers and students.

Assesment methods and criteria linked to learning outcomes

Exam: written and oral

Language of instruction

Czech

Work placements

Not applicable.

Course curriculum

Introduction to supramoclecular chemistry.
Molecular interactions.
Analytical methods in supramolecular chemistry.
Supramolecular chemistry of water.
Supramolecular chemistry of living systems.
Synthetic ionophores.
Complexation of neutral compounds.
Self-assembly in solids and liquids.
Supramolecular devices.

Aims

He aim is to provide the basic awareness on supramolecular chemistry, supramolecular design and applications.

Specification of controlled education, way of implementation and compensation for absences

Attendance to lectures is not required but is recommended.

Classification of course in study plans

  • Programme NPCP_SCH Master's

    branch NPCO_SCH , 2. year of study, winter semester, 4 credits, compulsory-optional

  • Programme NKCP_SCH Master's

    branch NKCO_SCH , 2. year of study, winter semester, 4 credits, compulsory-optional

  • Programme CKCP_CZV lifelong learning

    branch CKCO_CZV , 1. year of study, winter semester, 4 credits, compulsory-optional

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

eLearning