Course detail
Materials and Technical Documentation
FEKT-HMTDAcad. year: 2019/2020
Materials for electrical and electronic engineering, classification. Electrical conducting and resistive materials. Superconductivity. Ferro- and ferrimagnetic materials. Semiconductors. Dielectric and insulating materials.
Standardization of documents (ISO, EN, IEC, ETS, ČSN). Drawings of parts and assembly. Schemes in electrotechnics. Documentation for printed circuit boards (PCB). Text documents and graphic elements. Computer support for creating documentation. Corporate data management.
Supervisor
Learning outcomes of the course unit
The student gains elementary knowledge of materials for electrical and electronic engineering. On the basis of informations about material's composition, structure and properties the student will be able to understand applications of electrotechnical materials.
The student will be able to understand technical documents in electrotechnology and twill get acquainted with computer aided engineering systems used in corporations and the possibility of sharing data. The acquired knowledges of English technical terminology used in this area will enable the student to engage in discussions on professional topics..
Prerequisites
The subject knowledge on the secondary school level and pre-intermediate knowledge of English are required.
Co-requisites
Not applicable.
Recommended optional programme components
Not applicable.
Recommended or required reading
Jirák, J., Autrata, R., Liedermann, K., Rozsívalová, Z., Sedlaříková, M.: Materiály a technická dokumentace, část Materiály v elektrotechnice. Elektronické texty, Brno 2002. (CS)
Procházka, P., Rozsívalová, Z.: Materiály a technická dokumentace, část Technická dokumentace. Elektronické texty, Brno 2002. (CS)
John Stark, Van Norstrand Reinhold, Engineering Information Management
Systems: Beyond CAD/CAM to Concurrent Engineering Support, New York, NY,
1992, ISBN 0-442-01075-3.
(EN)
MAXA, J. Řízení a správa dat. Brno : VUT FEKT, 2006 (CS)
Askeland, R. D. The Science and Engineering of Materiále, PWS Publishing Copany Park Plaza, Boston, MA 02116-4324, 1994 (3. vydání), ISBN 0-534-93423-4. (EN)
Bouda, V., Hampl. J., Lipták,J.: Materials for electrotechnics. Vydavatelství ČVUT, Praha, 2000, 207 s. ISBN 80-01-02233-1. (EN)
Frank, H.: Fyzika a technika polovodičů. SNTL, Praha, 1990, 283 s. ISBN 80-03-00401-2. (CS)
Planned learning activities and teaching methods
Lecture are conducted by using PowerPoint presentation, short video - clips and films and discussion with students. Exercising are divided on laboratory exercise and reckoning exercising.
Assesment methods and criteria linked to learning outcomes
Requirements for credit:
Writing report from laboratory measurement. Min. 80% participation in computer exercises.
Final test.
Language of instruction
Czech, English
Work placements
Not applicable.
Course curriculum
Purpose and importance of documentation, sorting and types of documents, standardization of technical documents (ISO, EN, IEC, ETS, ČSN). Importance of graphical information. Basic standardization for graphical documents (drawings, schemes).
Computer aided engineering facilities (CAD, CAM, CAE, PDM).
Display methods of drawing documentation, E and A methods. Appropriate form of parts drawings (dimensioning, tolerance, roughness, geometrical tolerances). Assembly drawings, drawings with electrical assembly.
English terminology in technical preparation of production.
Materials for electrical and electronic engineering. Composition, structure and regulation of the material's properties. Crystalline and amorphous matters. Chemical bonds.
Conductive and resistive materials. Thermocouples. Superconductivity.
Magnetic materials. Magnetically soft- and hard materials.
Semiconductors. Elemental, compound and organic semiconductors. Intrinsic and extrinsic semiconductors. Electrical conductivity of semiconductors.
Dielectric classification. Organic and inorganic insulating materials. Behaviour of dielectric materials in electric field. Basic physical effects in dielectric materials - polarization, conductivity, losses.
Aims
The aim of the course in the part "Materials in electrotechnical" is to acquaint students with materials for electrical and electronic engineering, with their classification and important properties. This information supports basic orientation in selection of materials for construction of electrotechnical and electronic devices and equipments. At the same time, the student acquires the basics of the terminology used in these areas in the English language.
The aim in the part "Technical Documentation" is to acquaint students with standardization of documents in electrotechnology, with ways and demands on their processing. The students get acquainted with compilation of technical documents on practical examples and acquire good knowledge of aided engineering systems (CAD, CAM, CAE, PDM). The students will learn the basics of the usage of MS Word and Excel and will get acquainted with basic software environment and control of CAD systems.
Specification of controlled education, way of implementation and compensation for absences
The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.
Type of course unit
Lecture
13 hours, optionally
Teacher / Lecturer
Laboratory exercise
7 hours, compulsory
Teacher / Lecturer
eLearning
eLearning: currently opened course