Course detail

Introduction to Cybernetics

FEKT-BPC-UKBAcad. year: 2019/2020

Introduction to the technical cybernetics
Signals – definition, types, properties. A/D and D/A conversion.
Mathematical description of the basic signals.
Introduction to the modelling.
Systems - definition, types, properties (linearity, time-invariance, causality, etc.)
Static and dynamic systems. The system state, energy accumulation and system order.
Definition of a stability. Examples of the basic systems and the analogy between the physical systems and RLC systems.
Use of the feedback and the basic principle of automatic control.
The basic types of the controlled systems and their properties.
The basic types of controllers and their use.

Language of instruction

Czech

Number of ECTS credits

3

Mode of study

Not applicable.

Learning outcomes of the course unit

Absolvent is able to:
- describe basic signals by mathematic equations,
- define system and its basic properties (linearity, time-invariance, causality, etc.),
- distinguish between different kinds of systems and their structures,
- explain the terms system stability, system order and feedback,
- describe the basic principle of automatic control and enumerate several kinds of controllers (regulators),
- model and simulate simple systems using Matlab/Simulink.

Prerequisites

The basic knowledge of mathematics, physics and electrical engineering at the level of the 1st year Bachelor studies.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Techning methods include lectures, computer labs and final test.

Assesment methods and criteria linked to learning outcomes

The final test – 100 points. The minimum 50 points is required for credit.

Course curriculum

Lectures:
1. Introduction to the technical cybernetics.
2. Signals – definition, types, properties. A/D and D/A conversion. Mathematical description of the basic signals.
4. Static and dynamic systems. System state, system energy, accumulators of energy and system order.
5. Control - definition, types, properties. Examples of control.
6. Basic types of controlled systems (processess), their properties and examples.
7. Feedback and the basic principle of automatic control, the main kinds of controllers (regulators).
8. Summary. Example of a control implementation.

Computer labs:
1. Introduction to Matlab.
2. Implementation of simple model in Simulink.
3. Modelling and simulation of basic systems.
4. Demonstration of implemented control solution(s).
5. Final examination (test).

Work placements

Not applicable.

Aims

The goal of this course is to provide an overview and explanation of the basic concepts and principles used in automation and cybernetics. Other goal is to demonstrate on the practical examples description of systems and signals in the time domain and frequency domain and to prepare the students for following course Signals and Systems. Furthermore, the course also aims showing and explanation of the relationships between the signals/systems and the knowledge obtained in other courses.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year. Participation at computer labs is compulsory.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

ŠVARC, Ivan. Základy automatizace. Elektronické skriptum, Brno 2002. (CS)
OPENHEIM, Alan, WILSKY, Alan. Signals and Systems. Second edition. New Jersey: Prentice Hall 1997, 957 s. ISBN 0-13-814757-4. (EN)

Recommended reading

Not applicable.

eLearning

Classification of course in study plans

  • Programme BPC-AMT Bachelor's, 1. year of study, summer semester, compulsory

  • Programme EEKR-CZV lifelong learning

    branch ET-CZV , 1. year of study, summer semester, compulsory

Type of course unit

 

Lecture

16 hours, optionally

Teacher / Lecturer

Exercise in computer lab

10 hours, compulsory

Teacher / Lecturer

eLearning