Course detail

Mechanics and Acoustics

FIT-IMKAcad. year: 2019/2020

The course gives
an overview of basic concepts and laws in the field of mechanics. Students are
acquainted with the procedures for compiling equations of motion and using
software tools for their solution, with problems of choice of initial
conditions, displaying and interpreting the obtained solution. There are
presented basic quantities and principles of acoustics, especially physics,
musical and physiological acoustics. Basic information on ultrasound and
infrasound is also provided to the students.

Learning outcomes of the course unit

Students
understand the basic physical processes of mechanics and acoustics, they are
able to formulate relevant laws both verbally and mathematically, they can
solve the basic problems related to these processes using suitable software
support and can present and interpret the obtained results. They are able to
describe and explain the laboratory experiments.

Prerequisites

Vector operations. Fundamentals of differential calculus and integral calculus. For students of the first year, it is sufficient to obtain knowledge of differential and integral calculus in the parallel course of Mathematical analysis (IMA or IMA1).

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Texty přednášek, návody k laboratorním a počítačovým cvičením ve formátu pdf.
Halliday, D.; Resnick, R.; Walker, J. Fyzika. Vysoké učení technické v Brně, VUTIUM, Prometheus Praha, 2000, 2003, 2006, 2013.
Feynman, R; Leighton, R; Sands, M. Feynmanovy přednášky z fyziky 1-3, Fragment 2001, 2007, 2013.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

  • Laboratory exercise: 30 points. Points are obtained for work and activity in exercises. No laboratory reports.
  • Two individual projects: a total of 40 points.
  • Final individual work (written work using software support): 30 points.

Exam prerequisites:
To take the credit it is necessary to take part in all laboratory and computer exercises. Well-excused exercises can be replaced.

During the semester it is possible to get a point assessment for final independent work (written work using software support), two projects and work in laboratory exercises. It is necessary to obtain at least 50 points to obtain a credit. Classification is performed according to the standard scale.

Language of instruction

Czech, English

Work placements

Not applicable.

Aims

Understand the basic physical phenomena of mechanics and acoustics with emphasis on mastering the description and finding solutions to the basic problems of these areas so that the acquired skills can be later used in some computer applications, eg in signal processing or in modelling and simulation.

Specification of controlled education, way of implementation and compensation for absences

Attendance at lectures is not compulsory. Knowledge of students is verified by two individual projects and a final individual work (written work using software support).

Compulsory lessons are laboratory exercises and computer exercises. Well-excused exercises can be compensated. In the laboratory exercises the students do not elaborate the reports, the evaluation of the measurements is made during the lesson.

Classification of course in study plans

  • Programme BIT Bachelor's, 1. year of study, summer semester, 6 credits, elective

  • Programme IT-BC-3 Bachelor's

    branch BIT , 1. year of study, summer semester, 6 credits, elective

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus


  1. Kinematics of the mass point. Position, velocity and acceleration, linear and curvilinear motion, superposition principle, circular motion.

  2. Dynamics of the mass point. Newton's laws, equation of motion, inertial and noninertial systems, work and impulse of force, energy and momentum, moment of force and angular momentum.

  3. Gravitational field. Newton's law of gravity, intensity and potential, planetary and satellite movements.

  4. A set of mass points and a rigid body. Center of gravity, momentum theorem, angular momentum theorem, equilibrium and motion, kinetic energy, moment of inertia, friction, pendulums, gyroscope.

  5. Impact of bodies. Impact forces, perfectly elastic impact and inelastic impact, direct and oblique impact, rotating impact, ball, wall reflection, billiards, Newton's cradle.

  6. Deterministic chaos in mechanical systems. Conditions for chaotic behaviour, attractor, strange attractor, double pendulum.

  7. Fundamentals of analytical mechanics. Generalized coordinates and forces, Lagrange equations of the 2nd type, mathematical pendulum, particles in a central force field, two-body and three-body problems.

  8. Oscillations. Oscillatory motion, oscillator, harmonic oscillations, superposition and decomposition of oscillations, free, damped and forced oscillations, coupled oscillators.

  9. Waves. Travelling wave, phase velocity, wave reflection, refraction, diffraction, superposition and interference, standing wave, resonance vibrations in a string and in a tube, wave equation.

  10. Physical Acoustics. Acoustic displacement and pressure, sound propagation velocity, acoustic impedance, specific power and intensity, sound pressure and intensity levels, sound field, Doppler effect.

  11. Music Acoustics. Tone and noise, musical interval, consonance and dissonance, musical scale, natural and equal temperament tuning, tone colour, musical instruments, noise.

  12. Physiological Acoustics. Sound perception, spectral composition, sum and difference tones, volume, sound masking, sound measurement, noise.

  13. Ultrasound and infrasound. Properties, sources and detectors, propagation, effects, utilization, ultrasound diagnostics and defectoscopy.

Exercise in computer lab

12 hours, compulsory

Teacher / Lecturer

Syllabus

Computer exercises lasting 2 hours take place once every 2 weeks.

  1. Mass point mechanics - projectile motion, inclined plane, the equation of motion, software tools for its solution, choice of initial conditions, display and interpretation of the solution.
  2. Gravitational Field - solving body motion in a central-force field.
  3. Rigid body - equations of motion for translational and rotational motion, gyroscope, the impact of bodies.
  4. Pendulums - linear and nonlinear description, chaotic behaviour of the double pendulum.
  5. Oscillations - free, dumped and forced oscillations, coupled oscillators, Lissajous figures.
  6. Acoustics - superposition and interference of waves, the creation of sum and difference tones.

Laboratory exercise

12 hours, compulsory

Teacher / Lecturer

Syllabus

Laboratory
exercises  lasting 2 hours take place
once every 2 weeks.


  1. Movement of the body on an inclined plane, impact
    forces.

  2. Moment of inertia, gyroscope.

  3. Study of oscillatory motion.

  4. Composition and decomposition of periodic signals,
    sum and difference tones, sound masking.

  5. Resonance vibrations of string.

  6. Sound/noise measurement, Doppler Phenomenon, ultrasound
    diagnostics.

Project

12 hours, compulsory

Teacher / Lecturer

Syllabus

Each student
solves two projects, each of them contains selected problems from the given
area. For each problem, the student makes the description and then, with
appropriate software support, performs the solution with a graphical
representation and discussion of the results or simulates the course of the
specified process.


  1. Individual project No. 1 (20 points): Mechanics

  2. Individual project No. 2 (20 points): Acoustics