Course detail

Nonlinear Mechanics

FAST-CD056Acad. year: 2018/2019

Types and sources of nonlinear behavior of structures. New definition of stress and strain measures that is necessary for geometrical nonlinear analysis of structures. Principles of numerical solution of nonlinear problems (Newton-Raphson, modified Newton-Rapshon, arc length). Post critical analysis of structures. Linear and nonlinear buckling. Application of the presented theory for the solution of particular nonlinear problems by a FEM program.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Department

Institute of Structural Mechanics (STM)

Learning outcomes of the course unit

Students will learn fundamentals of nonlinear mechanics. They will understand quality and quantity of differences between linear and nonlinear analysis of structures. They will learn different formulations and methods of nonlinear analysis. Use of nonlinear analysis of structures in design praxis is increasing, therefore the knowledge gained in this subject will be very appreciated in praxis.

Prerequisites

Linear mechanics. Finite element method. Matrix algebra
Fundamentals of numerical mathematics. Infinitesimal calculus.

Co-requisites

Linear mechanics, Finite element method, Matrix algebra, Fundamentals of numerical mathematics, Infinitesimal calculus.

Planned learning activities and teaching methods

Lectures are theoretical. They start from the fundamentals of the tensor calculus and then there are lectured the strain and stress measures, basic formulations of the geometrical nonlinerity, fundamentals of the material nonlinearity, methods of solution of nonlinear algebraic equations and postcritical analysis. In the seminaries students work on computers uner the leadership of the teacher. They practically analyze what was theoretically lectured.

Assesment methods and criteria linked to learning outcomes

The attendance of lectures is not mandatory, but serves as one of the bases for evaluation of students. Attendance of exercises is mandatory. The theoretical knowledge which is presented on lectures is needed to pass the written and oral exam.

Course curriculum

1.Introduction to nonlinear mechanics. Physical and geometrical nonlinearities. Eulerian and Lagrangian nesnes.
2.Strain measures (Green-Lagrange, Euler-Almansi, engineering, logarithmic), their behavior in large strain and large rotation. Stress measures (Cauchy, 1. Piola-Kirchhoff, 2. Piola-Kirchhoff, Biot). Energeticaly conjugate stress and strain measures.
3.Tangent stiffness matrix, Material stiffness, Geometrical stiffness. Influence of nonlinear members of the strain tensor. Newton-Raphson method. Calculation of unbalanced forces.
4.Modified Newton-Raphson method. Postcritical analysis. Deformation control. Arc length method
5.Linear and nonlinear buckling. Von Mises truss, snap through. Physical nonlinearity (supports, beams, concrete, subsoil).
6.Types of materials, introduction into constitutive material models. Linear and nonlinear fracture mechanics. Fracture mechanical material parameters.
7.Problem of strain localization, false sensitivity on the mesh. Restriction of localization. Crack band model. Nonlocal continuum mechanics.
8.Constitutive equations for concrete and other quasi-fragile materials. Fracture-plastic model. Mircroplane model.
9.Influence of size to bearing capacity (size effect). Energetical and statistical causes. Analysis of the influence of size on strength in tension in bending.
10.Presentation of modeling by a software on nonlinear fracture mechanics. Examples of applications. Mechanics of damane.

Work placements

Not applicable.

Aims

Students will learn various types of nonlinearities that occur in the design of structures. They will understand the basic differences in the attitude to linear and nonlinear solution of structures. They will learn new definition of stress and strain measures and the principles that are necessary for nonlinear solution of structures by the Newton-Raphson method.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Recommended optional programme components

In the subject Nonlinear mechanics the konwledge of fundamentals of the tensor calculus are needed. These should be learned in the subject of mathematics.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme N-K-C-SI (N) Master's

    branch S , 2. year of study, winter semester, compulsory-optional

  • Programme N-P-E-SI (N) Master's

    branch S , 2. year of study, winter semester, compulsory-optional

  • Programme N-P-C-SI (N) Master's

    branch S , 2. year of study, winter semester, compulsory-optional

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

1.Introduction to nonlinear mechanics. Physical and geometrical nonlinearities. Eulerian and Lagrangian nesnes.
2.Strain measures (Green-Lagrange, Euler-Almansi, engineering, logarithmic), their behavior in large strain and large rotation. Stress measures (Cauchy, 1. Piola-Kirchhoff, 2. Piola-Kirchhoff, Biot). Energeticaly conjugate stress and strain measures.
3.Tangent stiffness matrix, Material stiffness, Geometrical stiffness. Influence of nonlinear members of the strain tensor. Newton-Raphson method. Calculation of unbalanced forces.
4.Modified Newton-Raphson method. Postcritical analysis. Deformation control. Arc length method
5.Linear and nonlinear buckling. Von Mises truss, snap through. Physical nonlinearity (supports, beams, concrete, subsoil).
6.Types of materials, introduction into constitutive material models. Linear and nonlinear fracture mechanics. Fracture mechanical material parameters.
7.Problem of strain localization, false sensitivity on the mesh. Restriction of localization. Crack band model. Nonlocal continuum mechanics.
8.Constitutive equations for concrete and other quasi-fragile materials. Fracture-plastic model. Mircroplane model.
9.Influence of size to bearing capacity (size effect). Energetical and statistical causes. Analysis of the influence of size on strength in tension in bending.
10.Presentation of modeling by a software on nonlinear fracture mechanics. Examples of applications. Mechanics of damane.

Exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

1. Demonstration of the differences between linear and nonlinear calculations.
2. Demonstration of the problems with a big rotations. Demonstration of the differences between the 2nd order theory and the large deformations theory.
3. Examples on bending of beams with a big rotations of the order of radians.
4. Examples on calculations of cables and membranes.
5. Examples on calculations of mechanismes.
6. Examples on calculations of stabilioty of beams.
7. Examples on calculations of stability of shells.
8. Comparison of the Newton-Raphson, modified Newton-Raphson and Picard methods.
9. Examples on postcritical analysis of beams and shells.
10. Demostration of the explicit method in nonlinear dynamics.