Course detail

Digital Audio Signal Processing

FEKT-MPC-CASAcad. year: 2019/2020

Acoustic signal and its essential characteristics, auditory masking, approaches to implementation of discrete and digital systems for sound processing, essential and advanced methods and structures for sound processing, time-invariant and –variant systems and their optimized simulation and implementation, implementation of frequently used tools for sound processing and musical effects, non-linear systems for sound processing and their implementation, sound panning systems, simulation of sound propagation in enclosed space and ways of its implementation, restoration of damaged audio recordings.

Learning outcomes of the course unit

Students get a detailed overview of procedures of analysis and digital signal processing of acoustic signals. They will gain experience of discrete and digital system simulation with the help of modern simulation tools. They will be able to design and simulate algorithms for acoustic signal processing, which are directly designed for the CPU of a computer system or for signal processor.

Prerequisites

The subject knowledge on the Bachelor degree level is required.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Ifeachor, E.C. Jervis, B.W. Digital Signal Processing - A practical Approach, 2nd ed. USA: Pearson Education Limited, 2002, ISBN 0201596199. (CS)
Zolzer, U. DAFX - Digital Audio Effects. Chichester: John Willey & Sons Ltd., 2005, ISBN 0471490784. (CS)
Kahrs, M. Brandenburg, K. Applications of Digital Signal Processing to Audio and Acoustics. USA: Kluwer Academic Publishers, 1998, ISBN 0792381300. (CS)
Pohlmann, K.C. Principles of Digital Audio. 6th ed. USA: McGRAW-HILL Companies, Inc. , 2010, ISBN 0071663460. (CS)

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the BUT Rules for Studies and Examinations.
Lectures provide the explanation of basic principles, subject methodology, examples of problems and their solutions.
Computer exercises support practical mastering of themes presented in lectures. Active participation of students is required.
Participation at lectures is recommended. Participation at computer exercises is checked.
Course is taking advantage of e-learning (Moodle) system.

Assesment methods and criteria linked to learning outcomes

Evaluation of study results follows the Rules for Studies and Examinations of BUT and the corresponding norm of FEEC. Up to 20 points are given for each of two tests in computer exercises. Up to 60 points are given for the final written examination.

Language of instruction

Czech

Work placements

Not applicable.

Course curriculum

1. Sound, acoustic signal and its essential properties, human sound perception, sound masking,
2. Discrete signals and systems, approaches to discrete and digital system implementation, acoustic signals and their processing,
3. Essential instruments, methods and structures for DSP system implementation,
4. Advanced delay structures, delay networks,
5. Time-invariant and –variant frequency filters, musical effects,
6. FIR systems, optimized algorithms for FIR system implementation,
7. IIR systems with varying length of delay buffer, peak and RMS value detector, discrete signal integrator,
8. Systems for signal dynamics modification, DRC system, maximize,
9. Nonlinear discrete system model, description of essential nonlinearities and nonlinear systems, frequency-dependent nonlinear systems,
10. Acoustic signal panning, vector based panning, ambisonic panning, multichannel panning, reflected sound wave panning,
11. Simulation of sound wave propagation, physical, perceptual and approximation approach, frequency-dependent sound wave absorption,
12. Echogram, first reflections, subsequent reflections and subsequent reverberation, structures for sound auditory simulation,
13. Acoustic signal restoration, broadband background noise reduction, impulsive disturbance reduction in acoustic signal.

Aims

The aim of the course is to provide students with information about essential simulation methods and implementation procedures in the area of digital audio signal processing. Considerable attention is devoted to the present trends in the area of general audio signal with focus on musical signals.

Specification of controlled education, way of implementation and compensation for absences

It is obligatory to do all computer exercises and tests to complete the course. Other forms of checked instruction are specified by a regulation issued by the guarantor of the course and updated for every academic year.

Classification of course in study plans

  • Programme MPC-AUD Master's

    specialization AUDM-TECH , 2. year of study, winter semester, 6 credits, compulsory-optional
    specialization AUDM-ZVUK , 2. year of study, winter semester, 6 credits, compulsory-optional

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Computer exercise

39 hours, compulsory

Teacher / Lecturer