Course detail

Algorithms

FIT-IALeAcad. year: 2017/2018

Overview of fundamental data structures and their exploitation. Principles of dynamic memory allocation. Specification of abstract data types (ADT). Specification and implementation of ADT's: lists, stack and its exploitation, queue, set, array, searching table, graph, binary tree. Algorithms upon the binary trees. Searching: sequential, in the ordered and in not ordered array, searching with the guard (sentinel), binary search, search tree, balanced trees (AVL). Searching in hash-tables. Ordering (sorting), principles, sorting without the moving of items, sorting with multiple keys. Most common methods of sorting: Select-sort, Bubble-sort, Heap-sort, Insert-sort a jeho varianty, Shell-sort, recursive and non-recursive notation of the Quick sort, Merge-sort, List-merge-sort, Radix-sort. Recursion and backtrack algorithms. Searching the patterns in the text. Proving of correctness of programs, construction of proved programs.

Language of instruction

English

Number of ECTS credits

5

Mode of study

Not applicable.

Offered to foreign students

Of all faculties

Learning outcomes of the course unit

  • Student will acquaint with the methods of proving of correctness of programs and with construction of proved programms and learn their significance. 
  • Student will learn the fundamentals of algorithm coplexity and their intention. 
  • He/she acquaints with basic abstract data types and to commands its implementation and exploitation. 
  • Student will learn the principles of dynamic memory allocation. 
  • He/she learns and commands recursive and non recursive notation of basic algorithms. 
  • Student overrules the implementation and analysis of most used algorithms for searching and sorting.

  • Student learns terminology in Czech ane English language
  • Student learns to participate on the small project as a member of small team
  • Student learns to present and defend the results of the small project

Prerequisites

  • Basic knowledge of the programming in procedural programming language. BASIC COMPETENCES AND KNOWLEDGE FROM PROGRAMMING (C-language, Pascal or others) WILL BE EXAMINED AT THE BEGINNING OF THE COURSE. FAILING WILL LEAD TO CANCELING THE ENROLED COURSE IAL !!!
  • Knowledge of secondary school level mathematics.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

  • to earn min. 20 points within the semester
  • Plagiarism and not allowed cooperation will cause that involved students are not classified and disciplinary action can be initiated.

Course curriculum

Syllabus of lectures:
  • Overview of data structures. Abstract data type and its specification.
  • Specification, implementation and exploitation of ADT list.
  • Specification, implementation and exploitation of ADT stack, queue. Numeration of expressions with the use of stack.
  • ADT array, set, graph, binary tree.
  • Algorithms upon the binary tree.
  • Searching, sequential, in the array, binary search.
  • Binary search trees, AVL tree.
  • Hashing-tables.
  • Ordering (sorting), principles, without movement, multiple key.
  • Most common methods of sorting of arrays, sorting of files.
  • Recursion, backtracking algorithms.
  • Proving the programs, costruction of proved programmes.

Syllabus - others, projects and individual work of students:
  • Two home assignments
  • Project with a mini-defence for a team of students.
  • NOte: Change for the year 2009, project cancelled!

Work placements

Not applicable.

Aims

To acquaint with the principles of methods of proving of correctness of programs and with basic concepts of construction of proved programms. To learn the fundamentals of algorithm coplexity. To learn the principles of dynamic memory allocation. To acquaint with basic abstract data types and to command its implementation and exploitation. To learn and command recursive and non recursive notation of basic algorithms. To overrule the implementation and analysis of most used algorithms for searching and sorting.

Specification of controlled education, way of implementation and compensation for absences

  • Evaluated ints home assignments - 20 points
  • Mid-term written examination - 15 points
  • Evaluated project with the defense - 15 points -
  • Final written examination - 50 points
  • Change for the year 2009
  • Two evaluated  home assignments - 20 points
  • Mid-term written examination - 18 point
  • Premium point for extra activity - 1 point 
  • Final written examination - 50 points
  • Attendance at lectures 1 of 11

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Basic literature

  • Honzík, J., Hruška, T., Máčel, M.: Vybrané kapitoly z programovacích technik, Ed.stř.VUT Brno,1991.
  • Knuth, D.: The Art of Computer programming, Vol.1,2,3. Addison Wesley, 1968
  • Wirth, N.: Alorithms+Data Structures=Programs, Prentice Hall, 1976
  • Horovitz, Sahni: Fundamentals of Data Structures.
  • Amsbury, W: Data Structures: From Arrays to Priority Cormen, T. H., Leiserson, Ch.E., Rivest, R.L.: Introduction to Algorithms.
  • Aho A.V., Hoppcroft J.E., Ullman J.D.: Data Structures and Algorithms.
  • Kruse, R.L.: Data Structures and Program Design. Prentice- Hall,Inc. 1984
  • Baase, S.: Computer Algorithms - Introduction to Design and Analysis. Addison Wesley, 1998

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme IT-BC-1H Bachelor's

    branch BCH , any year of study, winter semester, recommended

Type of course unit

 

Lecture

39 hours, optionally

Teacher / Lecturer

Syllabus

  • Overview of data structures. Abstract data type and its specification.
  • Specification, implementation and exploitation of ADT list.
  • Specification, implementation and exploitation of ADT stack, queue. Numeration of expressions with the use of stack.
  • ADT array, set, graph, binary tree.
  • Algorithms upon the binary tree.
  • Searching, sequential, in the array, binary search.
  • Binary search trees, AVL tree.
  • Hashing-tables.
  • Ordering (sorting), principles, without movement, multiple key.
  • Most common methods of sorting of arrays, sorting of files.
  • Recursion, backtracking algorithms.
  • Proving the programs, costruction of proved programmes.

Exercise in computer lab

13 hours, optionally

Teacher / Lecturer