Course detail

Robotics Workcells Designing and Programming

FSI-GNPAcad. year: 2017/2018

The course makes students familiar with the basics of designing robotic cells for various applications of technology. Major emphasis is placed on the overall workplace layout of main elements (2D / 3D layout), selection of appropriate sensors for a given application and taking into account the workplace safety with respect to current legal requirements and international standards. Furthermore, students learn about currently available options for programming of industrial robots, where the main emphasis is put on KUKA robots (KRL language, KUKA). The acquired knowledge will nevertheless be generally useful regardless of a robot manufacturer.

Learning outcomes of the course unit

Students will gain a comprehensive overview of the possibilities and requirements for the design of robotic cells. Based on the experience gained will be able to work independently in designing workplaces for typical applications in industry (handling, palletizing, welding, machining, etc.). Students also gain a comprehensive and practically oriented overview of programming of industrial robots. Based on the experience gained will be able to work independently in the field of programming robots for typical applications in industry (particularly in handling, palletizing, or CAD / CAM robotic machining).

Prerequisites

Successful completion of the subject Industrial Robots and Manipulators I (GPZ) and a basic knowledge of programming (language C, C ++, C #).

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

SICILIANO, B. KHATIB, O. Springer Handbook of Robotics. Springer-Verlag New York, Inc., 2008. 1611 s. ISBN 978-3-540-23957-4 (EN)
PIRES, J. N. Industrial Robots Programming: Building Applications for the Factories of the Future. Springer, 2008. 282 s. ISBN 978-0-387-23325-3 (EN)
NOF, S. Y. Springer Handbook of Automation. Springer, 2009. 1812 s. ISBN 978-3-540-78830-0 (EN)
MONKMAN, G. J., HESSE, S., STEINMANN, R. SCHUNK, H. Robot Grippers. Wiley-VCH Verlag, 2007. 463 s. ISBN 978-3527406197 (EN)
WOLF, A., STEINMANN, R. SCHUNK, H. Grippers in Motion: The Fascination of Automated Handling Tasks. Springer, 2005. 242 s. ISBN 978-3-540-27718-7 (EN)
Manuály k průmyslovým robotům KUKA: KUKA - Operating and Programming Instructions, v. 1.1, 2006; KUKA - KR C2/KR C3 Expert Programming, v. 01, 2006; KUKA - KR C4 Programming, 2013; KUKA - WorkVisual (různé verze), konfigurace vstupů/výstupů, 2013; KUKA - Industrial Robots, Safety: for mechanical components, 2012. (EN)

Planned learning activities and teaching methods

The course is based on laboratory seminars focusing on a practical use of acquired knowledge. Acquired knowledge will be tested within the seminars in connection with KUKA industrial robots. According to actual possibilities, the students will also be confronted with selected lectures presented by industrial experts. Special field trips to selected companies – focused on the course content – are also expected to organize.

Assesment methods and criteria linked to learning outcomes

The condition for the credit is at least 80% participation in seminars and a worked out project focusing on a given topic. Specifications for processing individual projects will be announced at the beginning of the semester.

Language of instruction

Czech

Work placements

Not applicable.

Aims

The aim of the course is to make students familiar with a methodology of designing robotic cells for typical applications and technologies used in the industry. Another aim concerns with methods of programming of industrial robots, including the use of advanced simulation tools for off-line programming. The subject is also the use of external PLC systems and sensors within the robotic cells - their integration and use in the context of solved problems.

Specification of controlled education, way of implementation and compensation for absences

Seminars are obligatory. Justified absence can be compensated by consultations. When obtaining credit, the student's knowledge will be verified based on the ability of their practical application.

Classification of course in study plans

  • Programme M2I-P Master's

    branch M-VSR , 1. year of study, summer semester, 4 credits, compulsory-optional
    branch M-VSR , 1. year of study, summer semester, 4 credits, compulsory-optional

Type of course unit

 

labs and studios

52 hours, compulsory

Teacher / Lecturer

Syllabus

1. Introduction to designing of robotic cells and advanced KUKA robot programming. Analysis of most common types of robotic cells including the safety issue.
2. Design methodology for the whole conception of robotic cells, placement of main components (expert level).
3. Advanced programming in KUKA KRL, sensors – possibilities of integration, possibilities of cell control.
4. Case study no. 1: manipulation task with KUA robot (conveyor belt, external control system).
5. Case study no. 2: using simulation tools (CAD/CAM programming, robotic deburring, milling).
6. Case study no. 3: Technological operations with industrial robots. Requirements, possibilities and approaches to solution.
7. Assignment of individual projects with KUKA robots: solution possibilities.
8. Projects solving: consultation and verification.
9. Projects solving: consultation and verification.
10. Projects solving: consultation and verification.
11. Projects solving: consultation and verification.
12. Verification and evaluation of student’s solutions.
13. Total classification.