Course detail
Power Supply Systems
FEKT-KNEZAcad. year: 2017/2018
The course is strongly oriented on practical knowledge, its aim is to teach students to properly choose type of electronics power supply and design it. Students get familiar with basic electronics components used in modern power supplies (both active and passive) including their parasitic properties. Different topologies of linear and switched mode power supplies are discussed. Isolated, non-isolated and autonomous power supplies are covered. Students perform simulation of elementary power supply circuitries, design a simple power supply using available CAD tools and design a PCB for it including manufacturing data output.
Supervisor
Department
Learning outcomes of the course unit
The graduate is able to
o describe parasitic properties of real electronic components and evaluate their impact on power supply properties
o compare properties (qualities) of different electronic components and choose appropriate on for target application
o explain functionality of both linear and switched mode power supplies
o choose suitable power supply topology (both linear and switched) according to the design needs
o calculate values of and requirements on basic components of power a supply
o use basic CAD tools for power supply design
o design a protection and cooling for a power supply
Prerequisites
Students are expected to have knowledge of basic electronic components (resistor, capacitor, inductor, transformer, diode, bipolar and unipolar transistor, tyristor) and basic knowledge of differentiation and integration.
Co-requisites
Not applicable.
Recommended optional programme components
Not applicable.
Recommended or required reading
Not applicable.
Planned learning activities and teaching methods
Techning methods include lectures, computer laboratories and practical laboratories. Course is taking advantage of e-learning (Moodle) system. Students have to prepare a single project during the course.
Assesment methods and criteria linked to learning outcomes
Student must pass the computer practice (10 points for active work) and the laboratory practice and he must elaborate and deliver all protocols in satisfactory quality (up to 10 points). Students can gain up to 30 points by elaboration of individual homework (submitted on tutorials). At final exam students can get up to 50 points.
Language of instruction
Czech
Work placements
Not applicable.
Course curriculum
1. Introduction to power supplies, principle of transformers
2. Properties of real transformers, principle and real properties of inductors
3. Properties of real capacitors and its application, properties of semiconductor rectifiers, diode rectifiers
4. Semiconductor switch components and their properties (bipolar and unipolar transistors, thyristor, triac, diac, IGBT), controlled-semiconductor rectifiers
5. Voltage references, Zener diodes, band-gap references
6. Parametric voltage regulators, linear voltage regulators with feedback
7. Integrated voltage regulators, charge pumps
8. Basic topologies of non-isolated switched-mode power supplies (inductor-based)
9. Basic topologies of isolated switched-mode power supplies
10. Synchronous rectification, parallel and multi-phase converters, bridge topologies
11. Quasi-resonant and resonant topologies, power factor correctors
12. Voltage regulator feedback design, protection and cooling of power supplies
13. Autonomous power supplies: primary and secondary cells, alternative power supplies.
Aims
Students get knowledge of basic principles of both switched and linear power supplies, they learn how to design and implement power supply systems using basic calculations and available CAD tools.
Specification of controlled education, way of implementation and compensation for absences
Evaluation of activities is specified by a regulation, which is issued by the lecturer responsible for the course annually.