Course detail

Mathematics 3

FEKT-KMA3Acad. year: 2017/2018

The aim of this course is to introduce the basics of two mathematical disciplines: numerical methods, and probability and statistics.
In the field of probability, main attention is paid to random variables, both discrete and continuous. The end of the course of probability is devoted to hypothesis testing.
In the field of numerical mathematics, the following topics are covered: root finding, systems of linear equations, curve fitting (interpolation and splines, least squares method), numerical differentiation and integration, numerical solving of differential equations.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

Students completing this course should be able to:
In the field of probability and statistics:
- compute the basic characteristics of statistical data (mean, median, modus, variance, standard deviation)
- choose the correct probability model (classical, discrete, geometrical probability) for a given problem and compute the probability of a given event
- compute the conditional probability of a random event A given an event B
- recognize and use the independence of random events when computing probabilities
- apply the total probability rule and the Bayes' theorem
- work with the cumulative distribution function, the probability mass function of a discrete random variable and the probability density function of a continuous random variable
- construct the probability mass functions (in simple cases)
- choose the appropriate type of probability distribution in model cases (binomial, hypergeometric, exponential, etc.) and work with this distribution
- compute mean, variance and standard deviation of a random variable and explain the meaning of these characteristics
- perform computations with a normally distributed random variable X: find probability that X is in a given range or find the quantile/s for a given probability
- approximate the binomial distribution with help of the normal distribution
- perform simple hypothesis testing: Z-test, test on the mean of normal distribution variance known, test on the parameter p of the binomial distribution

In the field of numerical methods, the student should be able to:
- find the root of a given equation f(x)=0 using the bisection method, Newton method or the iterative method, describe these methods including the convergence conditions
- find the root of a system of two equations using Newton or iterative method
- solve a system of linear equations using Gaussian elimination with pivoting, Jacobi and Gauss-Seidel iteration methods, discuss the advantages and disadvantages of these methods
- find Lagrange or Newton interpolation polynomial for given points and use it for approximating the given function
- find the approximation of a function by spline functions
- find the approximation of a function given by table of points by the least squares method (linear, quadratic or exponential approximation)
- choose the most convenient type of approximation (interpolation polynomial, spline, least squares)
- estimate the derivative of a given function using numerical differentiation
- compute the numerical approximation of a definite integral using trapezoidal and Simpson method, describe the principal of these methods, compare them according to their accuracy
- find the approximate solution of a differential equation using Euler method, modified Euler methods and Runge-Kutta methods

Prerequisites

The student should be able to apply the basic knowledge of combinatorics on the secondary school level: to explain the notions of variations, permutations and combinations, to determine their counts, to perform computations with factorials and binomial coefficients.
From the BMA1 and BMA2 courses, the basic knowledge of differential and integral calculus is demanded. Especially, the student should be able to sketch the graphs of elementary functions, to substitute into functions, to compute derivatives (including partial derivatives) and integrals.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

The final written test of maximum 70 points and maximum 30 points awarded during the semester.
During the semester, students have to hand in 5 homeworks (maximum 4 points per homework) and 2 computer laboratory tasks (maximum 5 points per task).
The final test consists of 7 tasks of equal point value (maximum 10 points each task). At least 3 tasks test knowledge of numerical methods and at least 3 tasks test knowledge of probability and statistics.

Course curriculum

Five tutorials and two computer classes:

Tutorial 1: Introduction, Numerical methods I
Tutorial 2: Numerical methods II
Computer class 1: Introduction to Matlab, examples from numerical methods
Tutorial 3: Numerical methods completed, Probability and statistics I
Tutorial 4: Probability and statistics II
Computer class 2: Examples from probability and statistics
Tutorial 5: Repetition, seminar, information about the exam.

For detailed content of tutorials 1-4 cf. the topics of BMA3:

1. Introduction to descriptive statistics
2. Introduction to probability. Some probability models (classical, discrete, geometrical), conditional probability, dependence and independence of random events. Total probability rule and Bayes theorem.
3. Discrete random variables (probability mass function, cumulative distribution function, mean and variance).
4. Discrete probability distributions (binomial, geometric, hypergeometric, Poisson).
5. Continuous random variables (probability density function, distrubution function, mean, variance, quantiles). Exponencial distribution.
6. Normal distribution. Central limit theorem. Normal approximation to the binomial distribution.
7. Introduction to statistics. Z-test. Test of the mean of a normal distrinution, variance known.
8. Introduction to numerical methods. Numerical methods for root finding (bisection method, Newton method, iterative method)
9. Numerical solution of systems of nonlinear equations. Systems of linear equations (Gaussian elimination with pivoting, Jacobi and Gauss-Seidel iterative methods).
10. Interpolation: interpolation polynomial (Lagrange and Newton), splines (linear and cubic)
11. Least squares approximation. Numerical differentiation.
12. Numerical integration (trapezoidal and Simpson method).
13. Numerical solution of differential equations: initial problems (Euler method and its modifications, Runge-Kutta methods), boundary value problems (very briefly).

Work placements

Not applicable.

Aims

The aim of this course is to introduce the basics of two mathematical disciplines: numerical methods, and probability and statistics.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course (or by the coordinator of the combined form of study) and updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme EEKR-BK Bachelor's

    branch BK-AMT , 2. year of study, winter semester, compulsory
    branch BK-EST , 2. year of study, winter semester, compulsory
    branch BK-MET , 2. year of study, winter semester, compulsory
    branch BK-SEE , 2. year of study, winter semester, compulsory
    branch BK-TLI , 2. year of study, winter semester, compulsory

  • Programme EEKR-CZV lifelong learning

    branch ET-CZV , 1. year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

1. Banach theorem. Jacobi and Gauss-Seidel iterative methods.
2. Interpolation, least squares method.
3. Spline, numerical methods of differentiation.
4. Numerical integration - trapezium and Simpson methods.
5. Solving ODE - Euler method and modifications of the method. Runge - Kutta method.
6. Solving ODE - Euler method for a system of equations, shooting method, finite difference method. Multistep methods.
7. Probabilistic models (classical and geometrical probabilities, discrete and continuous random variables).
8. Expected value and dispersion.
9. Binomial distribution. Fundamentals of statistical tests. The sign test.
10.Poisson and exponential distributions. Their application in queueing theory.
11.Normal distribution. Central limit theorem. Approximation of binomial distribution by means of normal distribution. Z-test and power.
12.The mean expected value test.

Exercise in computer lab

14 hours, compulsory

Teacher / Lecturer

Syllabus

There are no computer classes in KMA3. For reference purposes, BMA3 classes are given:

1. Root separation, bisection, regula falsi.
2. Iterative metod, Newton method.
3. Systems of nonlinear equations, interpolation.
4. Spline, least squares method.
5. Numerical differentiation and integration.
6. Numerical methods for ordinary differential equations - Euler method, Runge - Kutta method, finite difference method.

The other activities

12 hours, compulsory

Teacher / Lecturer

Syllabus

Classes have the form of tutorials; BMA3 practical classes are as follows:

1. Classical and geometrical probability.
2. Discrete and continuous random variable.
3. Expected value and dispersion.
4. Binomial distribution. The sign test.
5. The Poisson and exponential distributions, queuing theory.
6. Uniform and normal distributions, binomial approximation of normal distribution, z-test.
(7. Mean expected value test, power.)