Course detail

Electrical Engineering 1

FEKT-CEL1Acad. year: 2017/2018

The course deals with the basics of electrical engineering and in particular the theory of electrical circuits. At the beginning of the course universal and special methods of analysis of linear circuits in steady state are discussed. Next, students are introduced to the description and classification of time-varying quantities. The following part is an introduction to the analysis of nonlinear circuits using graphical and numerical methods. Another part of the course is dedicated to magnetic circuits, their description and basic methods of solutions. Important part of the course is laboratory exercises and computer exercises in which students will practice in the application of theoretical knowledge.

Learning outcomes of the course unit

After completing the course students will be able to:
- describe the characteristics of electrical circuit elements and their models,
- apply basic circuit laws in the analysis of electrical circuits,
- analyze linear and nonlinear nonconservative electric circuits,
- interpret the quantities in electrical circuits,
- calculate the characteristic values of the time-varying voltage and current waveforms.

Prerequisites

The subject knowledge on the secondary school level is required. In the range of the used mathematical tools students should be able to: - editing mathematical expressions; - explain the procedure of mathematical function examination in order to find extremes; - calculate the solution of simple linear equations ; - apply the basics of matrix calculus; - calculate the derivative, definite and indefinite integrals of simple linear functions of one variable and basic trigonometric functions.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

BRANČÍK, L. Elektrotechnika 1. Elektrotechnika 1. Brno: FEKT VUT v Brně, 2004. s. 1 ( s.)ISBN: 80-214-2607- 1. (CS)
SEDLÁČEK, J.; STEINBAUER, M.; MURINA, M. Elektrotechnika 1 (BEL1) - laboratorní a počítačová cvičení. Brno: Ing. Zdeněk Novotný, CSc., Ondráčkova 105, 628 00 Brno, 2008. s. 1 ( s.)ISBN: 978-80-214-3706- 7. (CS)
SEDLÁČEK, J.; STEINBAUER, M. Elektrotechnika 1 (BEL1) - pracovní sešit. Brno: akademické nakladatelství CERM, s.r.o. Brno, 2008. s. 1 ( s.)ISBN: 978-80-214-3707- 4. (CS)
KALÁB, P.; STEINBAUER, M.; VESELÝ, M. Bezpečnost v elektrotechnice. Brno: Ing. Zdeněk Novotný, CSc, Ondráčkova 105, 628 00 Brno, 2009. s. 1-68. ISBN: 978-80-214-3952- 8. (CS)
STEINBAUER, M.; KALÁB, P. Bezpečnost v elektrotechnice - pracovní sešit. Brno: CERM Brno, 2007. s. 1-41. (CS)
VALSA, J., SEDLÁČEK, J.: Teoretická elektrotechnika I. Skriptum VUT v Brně, 1997. (CS)
MIKULEC, M., HAVLÍČEK, V.: Základy teorie elektrických obvodů. Skriptum ČVUT v Praze, 1997. (CS)
BRANČÍK, L. Elektrotechnika 1. VUT v Brně: VUT v Brně, 2004. s. 1 ( s.) (CS)

Planned learning activities and teaching methods

Teachning methods include lectures, computer laboratories and practical laboratories. Course is taking advantage of e-learning (Moodle) system.

Assesment methods and criteria linked to learning outcomes

Total number of points is 100, including 25 points in two written tests in exercises, 5 points in laboratory tasks test and 70 points in final exam. All laboratory measurements are obligatory - to obtain credit it is necessary to measure all of laboratory exercises and to obtain 15 from maximum 30 points.
Requirements for completion of a course are: to gain credit and to perform an exam. Minimal necessary achieved total mark to pass this course is 50 points.

Language of instruction

English

Work placements

Not applicable.

Course curriculum

1. Introduction to electrical engineering
2. Maxwell equations, passive and active circuit elements, laws of electric circuits
3. Special methods of analyze of electric circuits (simplification method, superposition, transfiguration, method of source substitution), work and power of electric energy, power matching
4. Universal methods of analyze of electric circuits (Kirchhoff’s laws, current loops method)
5. Node voltages method, modified node voltages method
6. Method of source substitution (Thèvenin and Norton theorems)
7. Time variables (classification, characteristic values: maximal, average, rms)
8. Nonlinear circuits - approximation of characteristics of components
9. Analysis of nonlinear circuits - analytic, graphical, and numerical solution
10. Magnetic circuits (basic variables and laws, analogy between magnetic and electric circuit, induction, analysis and synthesis of magnetic circuits with coil)
11. Circuits with permanent magnet, force of electromagnet, transformers

Aims

The aim of the course is to provide basic knowledge of electrical circuit theory required as a broader basis for further study. The course prepares students for the following courses in electrical engineering specializations.

Specification of controlled education, way of implementation and compensation for absences

Attendance at laboratory classes is mandatory. Properly excused absences can be substituted, usually in the last week of the semester.

Classification of course in study plans

  • Programme EEKR-BC Bachelor's

    branch BC-AMT , 1. year of study, summer semester, 5 credits, compulsory
    branch BC-EST , 1. year of study, summer semester, 5 credits, compulsory
    branch BC-MET , 1. year of study, summer semester, 5 credits, compulsory
    branch BC-SEE , 1. year of study, summer semester, 5 credits, compulsory
    branch BC-TLI , 1. year of study, summer semester, 5 credits, compulsory

eLearning

eLearning: opened course