Course detail
Seminar of Electrical Engineering
FEKT-CELSAcad. year: 2017/2018
This course should help to the students graduated in grammar school to understand more difficult areas of subject Electrical engineering 1 (BEL1) and to gain practical skill for realization of laboratory experiments.
Topics of the course are the basics measurements in laboratories, production and distribution of electricity. Students will also practice the practical application of special purpose and universal methods of analysis of resistor circuits encountered in the course BEL1.
Supervisor
Learning outcomes of the course unit
After completing the course student will be able to:
- describe the characteristics of ideal and real electrical circuit elements,
- realize simple laboratory tasks according to the specified schema,
- measure and discuss the value of electrical quantities in stationary circuits,
- apply circuit simulator for solving simple circuits,
- analyze stationary circuits using Node Voltage Method and/or Current Loops Method,
- calculate basic types of magnetic circuits.
Prerequisites
The subject knowledge on the secondary school level is required. In the range of the used mathematical tools students should be able to:
- editing mathematical expressions;
- calculate the solution of simple linear equations ;
- apply the basics of matrix calculus;
- calculate the derivative, definite and indefinite integrals of simple linear functions of one variable and basic trigonometric functions.
Co-requisites
Not applicable.
Recommended optional programme components
Not applicable.
Recommended or required reading
DĚDKOVÁ, J.; STEINBAUER, M.; KALÁB, P. Elektrotechnický seminář. Brno: CERM Brno, 2009. s. 1-100. ISBN: 978-80-214-3841- 5. (CS)
BRANČÍK, L. Elektrotechnika 1. Elektrotechnika 1. Brno: FEKT VUT v Brně, 2004. s. 1 ( s.)ISBN: 80-214-2607- 1. (CS)
Haasz V., Sedláček M.: Elektrická měření. Praha : ČVUT, 1998. (CS)
KALÁB, P.; STEINBAUER, M.; VESELÝ, M. Bezpečnost v elektrotechnice. Brno: Ing. Zdeněk Novotný, CSc, Ondráčkova 105, 628 00 Brno, 2009. s. 1-68. ISBN: 978-80-214-3952- 8. (CS)
BASTIAN, P. a kol. Praktická elektrotechnika. Europa-Sobotáles, Praha 2004 (CS)
Planned learning activities and teaching methods
Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations. Form of teaching is combined - every lesson starts with lecture and is completed by numerical and/or laboratory practice. Course is taking advantage of eLearning (Moodle).
Assesment methods and criteria linked to learning outcomes
For obtaining the credit it is necessary to actively attend all laboratory and computational exercises that take place in the 3rd to 11 week of the semester.
Language of instruction
English
Work placements
Not applicable.
Course curriculum
1. Administrative, introduction to electrical engineering, rules of laboratory work, connecting of measuring devices, processing of measured data
2. Production and distribution of electric energy
3. Real sources of electric energy, voltage and current divider
4. Real circuit components, basic laws of electrical circuits, method of successive simplification
5. Principle of superposition
6. Current loops method (CLM)
7. Node voltages method (NVM)
8. Method of source substitution
9. Introduction to circuit simulator MicroCap
10. Nonlinear components and circuits
11. Magnetic circuits
12. Recapitulation
13. Final check
Aims
The aim of the course is to supplement the knowledge of difficult parts of the course Electrical Engineering 1, using combined numerical and laboratory exercises, and at the same time to embrace the principles of the implementation of practical experiments.
Specification of controlled education, way of implementation and compensation for absences
Attendance at laboratory and computational classes (3 to 11 week of semester) is mandatory. Properly excused absences can be substituted, usually in the last week of the semester.
Classification of course in study plans
- Programme EEKR-BC Bachelor's
branch BC-AMT , 1. year of study, winter semester, 2 credits, general knowledge
branch BC-EST , 1. year of study, winter semester, 2 credits, general knowledge
branch BC-MET , 1. year of study, winter semester, 2 credits, general knowledge
branch BC-SEE , 1. year of study, winter semester, 2 credits, general knowledge
branch BC-TLI , 1. year of study, winter semester, 2 credits, general knowledge