Course detail

# Technical Mechanics

The subject is focused on three parts of the mechanics: the mechanics of non-rigid bodies, mechanics of fluids and thermomechanics. In the mechanics of non-rigid bodies it is paid attention to the basic cases of simple stress, strength designing of elements, combined stress. In the mechanics of fluids the student gains in knowledge of statics and dynamics of fluids (for example continuity equation, Bernoulli equation). The last part of the subject is devoted to the thermomechanics, chiefly the laws of thermodynamics, thermal processes, basic thermal cycles, compressors, heat transfer, heat exchangers.
In the numerical exercises the mentioned problematic is solved in the specific examples.
This subject makes the important basic for the further subjects, principally Machinery of power station and Production of electric energy (for example i-s diagram of steam).

Learning outcomes of the course unit

Student is able to:
- enumerate and describe the basic cases of simple stress,
- explain terms: stress, main stress, normal stress, shear stress,
- express Hook´s law and define its validity,
- compute the pressure force of liquid on the general plane surface,
- use for the dynamics of fluids the Bernoulli equation,
- define the thermodynamics laws and describe the individual quantity,
- illustrate the different thermal processes of ideal gasses in p-V and T-s diagram,
- illustrate the different thermal processes of real gasses and steam in p-V, T-s and i-s diagram,
- compute the basic parameters of thermal cycles of gas turbine and steam turbine.

Prerequisites

The subject knowledge on the secondary school level is required and knowledge from the subjects Mathematics 1, Mathematics 2, Physics 1 and Physics 2.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Lázničková, I.: Technická mechanika. Mechanika poddajných těles. Termomechanika. (CS)
Lázničková, I.: Technická mechanika. Mechanika tekutin. Elektronická skripta, Brno, 2013. (CS)
Lázničková, I.: Technická mechanika. Sbírka příkladů. (CS)
Raček, J.: Technická mechanika. Úlohy z mechaniky tuhých a poddajných těles.
Raček, J.: Technická mechanika. Úlohy z mechaniky tekutin a termomechaniky.
Raček, J.: Technická mechanika. Mechanika tekutin a termomechanika.
Raček, J.: Technická mechanika. Mechanika poddajných těles. (CS)
Raček, J.: Technická mechanika. Řešené příklady.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.
Teaching methods include lectures and numerical exercises. Course is taking advantage of e-learning (Moodle) system.
Student have to write 6 single projects (physical problems). There are 3 continuous tests in the numerical exercises.

Assesment methods and criteria linked to learning outcomes

Final evaluation of this subject consist of the following parts:
a) numerical exercises 0-30 points
- continuous tests
- individual work
b) examination 0-70 points
- written part 0-30 p. - test questions and arithmetical problem
- oral part 0-40 p.
Requirements for successful completion of this subject are determined by a annual regulation of the lecturer.

Language of instruction

Czech

Work placements

Not applicable.

Course curriculum

Lectures:
1. Basic terms of mechanics of non-rigid bodies. Power, tension, Hook´s law.
2. State of tension. Strength designing of elements. Strength conditions.
3. Simple tension and pressure. Simple shear and cut. Torsion stress. Bending stress.
4. Combined stress.
5. Introduction to mechanics of liquids. Euler´s equation of statics of liquids, pressure power of liquid on the surface, statics equilibrium of liquids in relative surface.
6. Liquid flow classification, basic equations of flow (continuity equation, Bernoulli equation) and their application. Real liquid flow.
7. Thermal theory. Thermal qualities of substances. Laws of thermodynamics.
8. Thermal processes in ideal gasses.
9. Thermal processes in real gasses and steams.
10. Gas turbine thermal cycle.
11. Steam engine cycles.
12. Heat transfer.
13. Heat exchangers.

Numerical exercises:
Individual parts of technical mechanics are solved in specific problems.

Aims

The objective of the subject is to offer the students the basic information concerning mechanics of non-rigid bodies, mechanics of liquids and thermomechanics.

Specification of controlled education, way of implementation and compensation for absences

Numerical exercises are compulsory. The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Classification of course in study plans

• Programme EEKR-B Bachelor's

branch B-SEE , 2. year of study, winter semester, 6 credits, compulsory

• Programme EEKR-CZV lifelong learning

branch ET-CZV , 1. year of study, winter semester, 6 credits, compulsory

#### Type of course unit

Lecture

39 hours, optionally

Teacher / Lecturer

Exercise

26 hours, compulsory

Teacher / Lecturer

eLearning