Course detail

Structure and Properties of Materials

FEKT-NSVMAcad. year: 2015/2016

Composition, structure and properties of materials. Regulation of materials properties. Glass and ceramic for electronics, glass cements. Glass crystalline materials. Ceramic superconductors. Piezoelectrics. Elemental, compound and amorphous semiconductors, semiconductors films. Organic semiconductors. Magnetic metal glass. Materials for magnetic recording. Materials for optoelectronics. Fibre optics. Storage materials. Biomaterials and biocompatibility. High-purity materials. Composites. Conducting plastics. High-vacuum materials.

Learning outcomes of the course unit

At the end of the course, the student will be able to:
- classify electrical materials from the point of view of their properties and usage,
- explain nature of physical phenomena that take place in the structure of electrical materials,
- describe physical phenomena that take place in the electrical materials mathematically,
- describe mutual relation between composition and structure of materials and resulting properties and possibilities of controlling of these properties,
- project optimal kinds of materials for production of electrical, electronic and microelectronic devices, as well as for applications in related technical and scientific fields.

Prerequisites

The subject knowledge on the Bachelor´s degree level is requested.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Šesták, J. a ost.: Speciální technologie a materiály, ACADEMIA Praha 1993 (CS)
Hummel, R.,F.: Electronic Properties of Materials. Springer Verlag New York 2000, USA, ISBN 0-387-95144-X (EN)
Kazelle, J., Liedermann, K., Jirák, J., Havlíček, Vaněk, J.: Elektrotechnické materiály a výrobní procesy. Elektronické texty, Brno 2002. (CS)
Askeland, D. R.: The Science and Engineering of Materials. Boston 1994, USA, ISBN 0-534-93423-4 (EN)

Planned learning activities and teaching methods

Teaching methods include lectures, numerical exercises and practical laboratories. Course is taking advantage of virtual laboratories freely available on server.

Assesment methods and criteria linked to learning outcomes

up to 40 points during the semester (15 points from laboratory exercises and 25 points from written test)
up to 60 points from written final exam
Final exam is focused on verification of knowledge and orientation in the field of electrical materials.

Language of instruction

English

Work placements

Not applicable.

Course curriculum

Composition, structure and properties of materials. Approaches to regulation of materials properties.
Non-traditional and heat-resistant plastics. Conducting composites.
Glass for electronics. Glass cements. Sintered glasses. Glass crystalline materials.
Ceramic for electronics. Ceramic superconductors. Piezoelectrics.
Elemental, compound semiconductors.
Amorphous semiconductors. Organic semiconductors. Semiconducting films.
Magnetic metal glasses. Materials for magnetic recording.
Materials for optoelectronics. Fibre optics.
High-purity materials for electronic and other purposes.
High-vacuum materials.
Materials for conversion of energy. Storage materials.
Bio-materials and bio-compatibility.
Materials and working environment.

Aims

The aim of the course is to acquaint students with the mutual relation of composition and structure of materials on their properties and approaches to regulation of materials properties. The knowledge of these relation enables to design optimal sorts of materials for electrical, electronic and microelectronic manufacturing and applications in related technical and scientific branches.

Specification of controlled education, way of implementation and compensation for absences

Obligatory participation in teaching.

Classification of course in study plans

  • Programme EEKR-MN Master's

    branch MN-EVM , 1. year of study, winter semester, 6 credits, compulsory
    branch MN-MEL , 1. year of study, winter semester, 6 credits, optional specialized

Type of course unit

 

Lecture

39 hours, compulsory

Teacher / Lecturer

Exercise

12 hours, compulsory

Teacher / Lecturer

Laboratory exercise

14 hours, compulsory

Teacher / Lecturer