Course detail

Non-destructive diagnostics and physics of dielectrics

FEKT-NNDDAcad. year: 2015/2016

The course focuses on two areas of modern diagnostic materials, i.e. dielectric spectroscopy and acoustic and electromagnetic emission.
Emphasis is put on the understanding of the issues, applying relevant knowledge and practical experience with diagnostic materials.
The following topics are demonstrated during a semester:
physical laws accompanying the behavior of dielectrics and insulators in electric field polarization happening in dielectrics, the behavior of materials in the DC and AC electric field, the fundamental aspects of conductivity, dielectric absorption, dielectric loss and dielectric strength materials. Furthermore, the basic types of electrical insulating materials due to their being sorted resistance degradation factors, in particular the temperature and electrical stress.
In the area of acoustic and electric emissions will be:
The emergence and spread of acoustic signals and electromagnetic emissions, types of diagnostic sensors, types of defects in composite systems, analysis of noise spectra using low-noise amplifiers, suitable measurement techniques and shielding systems.
Students will enhance skills in diagnostics of materials, analysis of dielectric spectra analysis of noise spectra, programming in Matlab and communication over the GPIB and RS 232

Learning outcomes of the course unit

- Describe different types of polarization in dielectric materials
- Name of the principles of polarization and to estimate the frequency dependence of the dielectric spectrum
- Identify defects in the dielectric systems and identify degradation processes in materials
- Describe the various noise spectrum and assess the impact of noise on the characteristics of the components
- Create a replacement model of passive and active components
- Define the causes of acoustic or electromagnetic emissions and create a mathematical model
- Implement basic acoustic emission measurements
- Create a measurement algorithm in Matlab communication with the GPIB, RS232 and TCP

Prerequisites

Students should be able to explain the basic physical phenomena, analyze simple electronic circuits, know basic programming algorithms in Matlab or C + +. General knowledge is required at the level of bachelor's degree and valid examination for qualifying workers for an independent activity (within the meaning of § 6 of the Decree).

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Ambrózy, A.: Electrical Noise, Budapest, Academia, 1982,
Buckingham, M.J. : Noise in Electronics Devices and Systems, London, John Wiley, 1983,
Böttcher, C. J. F., Bordewijk, P.: Theory of Electric Polarization, 2. ed., Amsterdam, Elsevier, 1978,
Hawkins, W. L.: Polymer Degradation and Stabilization, 1. ed., Berlin, Springer-Verlag, 1984,
Hedvig, P.: Dielectric Spectroscopy of Polymers, Budapest, Akadémiai Kiadó & Adam Hilger, 1977,
Jellinek, H. H. G.: Aspects of Degradation and Stabilization of Polymers, 1. ed., Amsterdam, Elsevier, 1978,
Jonscher, A. J. K.: Dielectric Relaxation in Solids. 1. ed., London, Chelsea Dielectric Press, 1983
Havriliak, S. Jr., Havriliak, S. J: Dielectric and Mechanical Relaxation in Materials: Analysis, Interpretation and Application to Polymers, Hanser/Gardner Publications, Inc., Cincinnati & Carl Hanser Verlag, München, 1997

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations. They include lectures, excercises, computer laboratories and practical laboratories. Course is taking advantage of e-learning (Moodle) system.

Assesment methods and criteria linked to learning outcomes

- Evaluation of laboratory exercises - 20 b (total 4 reports)
- Unspecified - 30 b (two semester work with the defense)
- Final exam - 50 b

Language of instruction

English

Work placements

Not applicable.

Course curriculum

1. Electric fields, induction, introduction to dielectric spectroscopy
2. Dipole moment, dielectric insulator
3. Dielectric polarization in both AC and DC pole
4. The mathematical description of dielectric materials
5. Behavior dielectric spectra depending on the temperature, pressure and humidity
6. Description relaxation processes and their interpretation
7. Acoustic emission, historical development, wave longitudinal, transverse
8. Acoustic emission sensors, instrumentation for measuring acoustic signal.
9. Parameters for assessment, fault isolation.
10. Acoustic emission in composites, acoustic emissions in building materials.
11. Electromagnetic emissions, its interpretation sensor.
12. Methods to increase the immunity measuring systems.

Aims

Obtain a general overview of the use of dielectric spectroscopy in materials science and other fields of engineering,
- Obtain a general overview of the use of acoustic and electromagnetic emissions in materials science and other fields of engineering,
- Define the basic aspects of the analysis of dielectric materials
- Identify the basic dielectric spectrum and propose a suitable mathematical method
- Define the basic characteristics of the noise
- Identify a characteristic noise and identify corrective measures for passive components
- Create measurement algorithms with conventional measuring instruments on the GPIB, RS232, TCP

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Classification of course in study plans

  • Programme EEKR-MN Master's

    branch MN-EVM , 1. year of study, summer semester, 5 credits, theoretical subject
    branch MN-MEL , 1. year of study, summer semester, 5 credits, theoretical subject
    branch MN-EEN , 1. year of study, summer semester, 5 credits, theoretical subject

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Exercise

13 hours, optionally

Teacher / Lecturer

Laboratory exercise

13 hours, optionally

Teacher / Lecturer