Course detail

Materials for biomedical applications

FEKT-NMBAAcad. year: 2015/2016

The subject will deal with special materials proposed for the use in biomedical praxi. The sensors and special electrodes will be described in one of the main chapters. Another chapter will contain knowledge on new electrochemical power sources for medical devices both stand/alone and implanted such as pacemakers. An important section will be devoted to the corrosion and lifetime of materials in biological environment and to the compatibility if implanted devices in tissues. The influence of charged particles and heavy ions in atmosphere on the condition of human organism will be treated in another section. Finally, the use of NMR for diagnostic and analytical purposes will be described in next section.

Learning outcomes of the course unit

Fundamental comprehension of electrochemical power sources in realtion to biomedical praxis, fundamentals of electrochemical measurements, properties of polymeric and metalic materials for implanted objects and devices. the description of atmospheric ions in air, their measurement and influence, the imaging by magnetic resonance.

Prerequisites

The subject knowledge on the Bachelor´s degree level is requested.

Co-requisites

Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Vondrák, J., Sedlaříková,M.,Elektrochemická měření, elektronická verze (CS)
Bednář B. a kol.:Nové materiály, VŠCHT, Praha 1991 (CS)
VONDRÁK, J., SEDLAŘÍKOVÁ, M., REITER, J., NOVÁK, V., NEČESAL, P. Carbon and/ or graphite anodes for gel polymer batteries. In International Meeting on Lithium Batteries. Nara, Japonsko: The Electrochemical Society, Inc., 2004. s. 234 ( s.)ISBN: 1-56677-415- 2. (CS)
Pistoia, G.: Lithium Batteries, New Materials, Developments and Perspective, Elsevier Science B.V., Amsterodam, 1994 (EN)
Liu,B. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material, Material Letters 65 (2011) 540-543 (EN)

Planned learning activities and teaching methods

Techning methods include lectures and practical laboratories . Course is taking advantage of e-learning (Moodle) system. Students have to write a 3 project/assignment during the course.

Assesment methods and criteria linked to learning outcomes

Classification of laboratory work
written test
written part of closing examen

Language of instruction

English

Work placements

Not applicable.

Course curriculum

1. Basic physical properties of tissues and body fluids
2. Corrosion and compatibility of materials in living organisms
3. Electrodes aas sensors for analysis of tissues
4. Chemical power sources for laboratory instrumentation and implanted
devices
5. Materials for biological environment
6. Influence of ions and compounds of selected elements on composition
and properties of fluids from tissues
7. Fundamentals of NMR spectroscopy and tomography and basic
diagnostic methods
8. NMR compatibility of implantates in tissues, magnetic susceptibility of
materials

Aims

The proposed subject will prepare the pregraduate students of FEEC for the solution of technological, economic and ecologic problems connected with the choice, usage and testing of various materials in biomedical applications.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Classification of course in study plans

  • Programme EEKR-MN Master's

    branch MN-BEI , 1. year of study, summer semester, 5 credits, optional interdisciplinary
    branch MN-EVM , 1. year of study, summer semester, 5 credits, optional specialized

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Laboratory exercise

26 hours, compulsory

Teacher / Lecturer