Course detail

CAD in Transportation Structures

FAST-BN92Acad. year: 2013/2014

Introduction into the problems. 2-D programming systems, basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk. 3-D programming systems, basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk.
Scanning and filtration of data. Vectorisation of mapping data. Digital model of terrain, input, formation, depiction.
Design of a horizontal alignment, stationing, significant points, description, free alignment of the line, equalisation. Longitudinal profile, vertical alignment. Methods of terrain equalisation, characteristic cross sections and slopes.
Pitching and super elevation – methods. Methods of line structure design, cubage, records, imports and exports,
Definition of a route, modeller, depiction, crossing design, design and layout of turnouts. CAD software InRoad/InRail, MxRoad/MxRail.
Introduction into modelling problems of constructions. Basic characteristics of programming products for calculations of FEM, basic phases of a model design. Basic types of tasks.

Language of instruction

Czech

Number of ECTS credits

0

Mode of study

Not applicable.

Department

Institute of Railway Structures and Constructions (ZEL)

Learning outcomes of the course unit

Students will acquire knowledge to enable them to design linear structures using a computer. They also learn to build a digital terrain model of the different types of data. The acquired knowledge is the creation Landscaping. Students will learn how to design roads, including road widening. At the same time students will learn to design computer railways, including design points.

Prerequisites

Basic work in CAD​​, the average knowledge of information technology. The basic design elements of line structures.

Co-requisites

No more knowledge is needed.

Planned learning activities and teaching methods

The course is taught through lectures, practical classes and self-study assignments. Attendance at lectures is optional, but attendance at classes is compulsory.

Assesment methods and criteria linked to learning outcomes

Attendance at seminars.
Successful completion of a written test.

Course curriculum

1. Introduction into the problems. 2-D programming systems.
2. Basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk. 3-D programming systems.
3. Basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk.
4. Scanning and filtration of data. Vectorisation of mapping data.
5. Digital model of terrain, input, formation, depiction.
6. Design of a horizontal alignment, stationing, significant points, description, free alignment of the line, equalisation.
7. Longitudinal profile, vertical alignment.
8. Methods of terrain equalisation, characteristic cross sections and slopes.
9. Pitching and super elevation – methods.
10. Methods of line structure design, cubage, records, imports and exports,
11. Definition of a route, modeller, depiction, crossing design, design and layout of turnouts. CAD software InRoad/InRail, MxRoad/MxRail.
12. Introduction into modelling problems of constructions.
13. Basic characteristics of programming products for calculations of FEM, basic phases of a model design. Basic types of tasks.

Work placements

Not applicable.

Aims

The objective of the subject is to introduce students to the problems of design of transport structures in CAD software, modelling of structures and to practise acquires knowledge and skills.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Not applicable.

Recommended reading

T. Kácha: SiteWorks a InRoads pro MicroStation. Intergraph ČR, 1998.
T. Lendvorský: Školení MX. SYMOS Praha, 2001.

Classification of course in study plans

  • Programme B-P-C-SI Bachelor's

    branch VS , 2. year of study, summer semester, recommended

Type of course unit

 

Lecture

13 hours, optionally

Teacher / Lecturer

Syllabus

1. Introduction into the problems. 2-D programming systems.
2. Basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk. 3-D programming systems.
3. Basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk.
4. Scanning and filtration of data. Vectorisation of mapping data.
5. Digital model of terrain, input, formation, depiction.
6. Design of a horizontal alignment, stationing, significant points, description, free alignment of the line, equalisation.
7. Longitudinal profile, vertical alignment.
8. Methods of terrain equalisation, characteristic cross sections and slopes.
9. Pitching and super elevation – methods.
10. Methods of line structure design, cubage, records, imports and exports,
11. Definition of a route, modeller, depiction, crossing design, design and layout of turnouts. CAD software InRoad/InRail, MxRoad/MxRail.
12. Introduction into modelling problems of constructions.
13. Basic characteristics of programming products for calculations of FEM, basic phases of a model design. Basic types of tasks.

Exercise

26 hours, compulsory

Teacher / Lecturer

Syllabus

The following exercises are practiced teaching tasks:
1. Digital model of terrain, input, formation, depiction.
2. Design of a horizontal alignment, stationing, significant points, description, free alignment of the line, equalisation.
3. Longitudinal profile, vertical alignment.
4. Methods of terrain equalisation, characteristic cross sections and slopes.
5. Pitching and super elevation – methods.
6. Methods of line structure design, cubage, records, imports and exports,
7. Definition of way, modeler of the way, view.
8. Expanding of the way, climbing lanes.
9. Location of switches.
10. Settlement (regression) direction and height points, curvature diagram.
11. Creating excavation, landfill, etc. in a digital model.
12. Solving basic geodetic tasks (methods of alignment)