Publication detail

Thermal and Static Analysis of an Insulation Block from Recycled Thermal and Static Analysis of an Insulation Block from Recycled Thermal and Static Analysis of an Insulation Block from Recycled Polymer HDPE for Solution of Thermal Bridges in Wall-footing Detail

PĚNČÍK, J. MATĚJKA, L. MATĚJKA, L.

Original Title

Thermal and Static Analysis of an Insulation Block from Recycled Thermal and Static Analysis of an Insulation Block from Recycled Thermal and Static Analysis of an Insulation Block from Recycled Polymer HDPE for Solution of Thermal Bridges in Wall-footing Detail

English Title

Thermal and Static Analysis of an Insulation Block from Recycled Thermal and Static Analysis of an Insulation Block from Recycled Thermal and Static Analysis of an Insulation Block from Recycled Polymer HDPE for Solution of Thermal Bridges in Wall-footing Detail

Type

journal article

Language

en

Original Abstract

With the sustainable construction the emphasis is placed on saving energy, reducing of consumption of natural resources, extending the life cycle of recycling, etc. One of the important groups of materials that can be reused are polymers. Polymers and waste polymers can be used as a base material for products used in civil engineering. One of these products, which were developed, is an insulation block from modified recycled polymer HDPE for direct solution of thermal bridges in wall footing detail. Design of the insulation block has been done using the MAP method together with long-time experimental testing of specimens and in a testing wall in scale 1:1. In the mathematic modeling the installation block was assessed in terms of statics and thermal technology. Static assessment was performed using Standard Solid rheological model, which represents the most accurate approximation of long-time behaviour.

English abstract

With the sustainable construction the emphasis is placed on saving energy, reducing of consumption of natural resources, extending the life cycle of recycling, etc. One of the important groups of materials that can be reused are polymers. Polymers and waste polymers can be used as a base material for products used in civil engineering. One of these products, which were developed, is an insulation block from modified recycled polymer HDPE for direct solution of thermal bridges in wall footing detail. Design of the insulation block has been done using the MAP method together with long-time experimental testing of specimens and in a testing wall in scale 1:1. In the mathematic modeling the installation block was assessed in terms of statics and thermal technology. Static assessment was performed using Standard Solid rheological model, which represents the most accurate approximation of long-time behaviour.

Keywords

material recycling, FEA, thermal bridge, HDPE, viscoelastic

RIV year

2013

Released

01.01.2013

Publisher

Trans Tech Publications, Switzerland

Location

Switzerland

Pages from

473

Pages to

476

Pages count

4

BibTex


@article{BUT93212,
  author="Jan {Pěnčík} and Libor {Matějka} and Lukáš {Matějka}",
  title="Thermal and Static Analysis of an Insulation Block from Recycled Thermal and Static Analysis of an Insulation Block from Recycled Thermal and Static Analysis of an Insulation Block from Recycled Polymer HDPE for Solution of Thermal Bridges in Wall-footing Detail",
  annote="With the sustainable construction the emphasis is placed on saving energy, reducing of consumption of natural resources, extending the life cycle of recycling, etc. One of the important groups of materials that can be reused are polymers. Polymers and waste polymers can be used as a base material for products used in civil engineering. One of these products, which were developed, is an insulation block from modified recycled polymer HDPE for direct solution of thermal bridges in wall footing detail. Design of the insulation block has been done using the MAP method together with long-time experimental testing of specimens and in a testing wall in scale 1:1. In the mathematic modeling the installation block was assessed in terms of statics and thermal technology. Static assessment was performed using Standard Solid rheological model, which represents the most accurate approximation of long-time behaviour.",
  address="Trans Tech Publications, Switzerland",
  chapter="93212",
  institution="Trans Tech Publications, Switzerland",
  number="2013",
  volume="525-526",
  year="2013",
  month="january",
  pages="473--476",
  publisher="Trans Tech Publications, Switzerland",
  type="journal article"
}