Publication detail

New CMOS potentiostat as ASIC for several electrochemical microsensors construction

FUJCIK, L. PROKOP, R. PRÁŠEK, J. HUBÁLEK, J. VRBA, R.

Original Title

New CMOS potentiostat as ASIC for several electrochemical microsensors construction

Czech Title

Nový ASIC CMOS potenciostat pro konstukci elektrtochemických mikrosenzorů

English Title

New CMOS potentiostat as ASIC for several electrochemical microsensors construction

Type

journal article

Language

en

Original Abstract

The purpose of this paper is to design and create the potentiostat that can be integrated and encapsulated within a microelectrode as a low-cost electrochemical sensor. Recently, microsystems on sensors or lab on a chip using electrochemical detection of substances matters are pushing forward into the area of analysis. For providing electrochemical analysis, the microsystem has to be equipped with an integrated potentiostat. The integrated potentiostat with four current ranges (from 1 uA to 1 mA) was designed in the CADENCE software environment using the AMIS CMOS 0.7um technology and fabricated under the Europractice program. Memory cells of 48 bytes were implemented with the potentiostat using VERILOG. The characteristics of integrated potentiostat are strictly linear; the measured results confirm the simulated values. The potentiostat measurements error is about 1.5 percent and very low offsets are reached by the offset-zeroing circuitry. The detection limit of the current at the lowest range with respect to S/N ratio is about 10 nA. The integrated potentiostat is embedded on a screen-printed sensor and its characteristics are successfully verified. Lower range of 100 nA can be implemented on a new microchip as well as rail to rail output circuitry would increase the voltage dynamic range.

Czech abstract

Cílem tohoto příspěvku byl návrh a výroba potenciostatu, který může být integrován a zapouzdřen na mikroelektrodě, jako levný elektrochemický senzor. Oblast analýzy je v poslední době hnána kupředu mikrosystémy na senzoru nebo laboratořemi na čipu využívajícími elektrochemickou detekci látek. Proto musí být pro zajištění elektrochemické analýzy mikrosystém vybaven integrovaným potenciostatem. Integrovaný potenciostat se čtyřmi proudovými rozsahy (od 1 uA do 1 mA) byl navržen v programu CADENCE s použitím technologie AMIS CMOS 0.7 um, který byl vyroben v rámci programu Europractice. Pro implementaci paměťových 48 bytových buněk do potenciostatu byl použit VERILOG. Výsledná charakteristika integrovaného potenciostatu je dle provedeného měření přesně lineární, což potvrdilo výsledky předešlé simulace. Potenciostat dosahuje přesnosti měření okolo 1,5% a velmi nízkého ofsetu je dosaženo pomocí nulovacího obvodu ofsetu. Limit proudové detekce s ohledem na poměr signál/šum je okolo 10 nA. Integrovaný potenciostat je zapouzdřen na tištěném senzoru, jehož charakteristiky byly úspěšně ověřeny. Další verze mikropotenciostatu na čipu by měla být vybavena nižším proudovým rozsahem a rovněž i rail to rail výstupním obvodem, který by mohl zvýšit napěťový dynamický rozsah.

English abstract

The purpose of this paper is to design and create the potentiostat that can be integrated and encapsulated within a microelectrode as a low-cost electrochemical sensor. Recently, microsystems on sensors or lab on a chip using electrochemical detection of substances matters are pushing forward into the area of analysis. For providing electrochemical analysis, the microsystem has to be equipped with an integrated potentiostat. The integrated potentiostat with four current ranges (from 1 uA to 1 mA) was designed in the CADENCE software environment using the AMIS CMOS 0.7um technology and fabricated under the Europractice program. Memory cells of 48 bytes were implemented with the potentiostat using VERILOG. The characteristics of integrated potentiostat are strictly linear; the measured results confirm the simulated values. The potentiostat measurements error is about 1.5 percent and very low offsets are reached by the offset-zeroing circuitry. The detection limit of the current at the lowest range with respect to S/N ratio is about 10 nA. The integrated potentiostat is embedded on a screen-printed sensor and its characteristics are successfully verified. Lower range of 100 nA can be implemented on a new microchip as well as rail to rail output circuitry would increase the voltage dynamic range.

Keywords

electrochemical devices, sensors, integrated circuits

RIV year

2010

Released

01.02.2010

Publisher

Emerald Group Publishing Limited

Location

United Kingdom

Pages from

3

Pages to

10

Pages count

8

BibTex


@article{BUT49025,
  author="Lukáš {Fujcik} and Roman {Prokop} and Jan {Prášek} and Jaromír {Hubálek} and Radimír {Vrba}",
  title="New CMOS potentiostat as ASIC for several electrochemical microsensors construction",
  annote="The purpose of this paper is to design and create the potentiostat that can be integrated and encapsulated within a microelectrode as a low-cost electrochemical sensor. Recently, microsystems on sensors or lab on a chip using electrochemical detection of substances matters are pushing forward into the area of analysis. For providing electrochemical analysis, the microsystem has to be equipped with an integrated potentiostat. The integrated potentiostat with four current ranges (from 1 uA to 1 mA) was designed in the CADENCE software environment using the AMIS CMOS 0.7um technology and fabricated under the Europractice program. Memory cells of 48 bytes were implemented with the potentiostat using VERILOG. The characteristics of integrated potentiostat are strictly linear; the measured results confirm the simulated values. The potentiostat measurements error is about 1.5 percent and very low offsets are reached by the offset-zeroing circuitry. The detection limit of the current at the lowest range with respect to S/N ratio is about 10 nA. The integrated potentiostat is embedded on a screen-printed sensor and its characteristics are successfully verified. Lower range of 100 nA can be implemented on a new microchip as well as rail to rail output circuitry would increase the voltage dynamic range.",
  address="Emerald Group Publishing Limited",
  chapter="49025",
  institution="Emerald Group Publishing Limited",
  journal="MICROELECTRONICS INTERNATIONAL",
  number="volume 27 n. 3",
  volume="2010",
  year="2010",
  month="february",
  pages="3--10",
  publisher="Emerald Group Publishing Limited",
  type="journal article"
}