Publication detail
Some asymptotic properties of solutions of homogeneous linear systems of ordinary differential equqtions
DIBLÍK, J.
Original Title
Some asymptotic properties of solutions of homogeneous linear systems of ordinary differential equqtions
English Title
Some asymptotic properties of solutions of homogeneous linear systems of ordinary differential equqtions
Type
journal article - other
Language
en
Original Abstract
Consider the system (1) $x'=A(t)x$, where $t\in I\sb 1=(x\sb 0- \varepsilon,\infty)$, $-\infty
English abstract
Consider the system (1) $x'=A(t)x$, where $t\in I\sb 1=(x\sb 0- \varepsilon,\infty)$, $-\infty
Keywords
asymptotic properties, homogenous linear systems, ordinary differential equations
RIV year
1992
Released
17.04.1992
ISBN
0022-247X
Periodical
Journal of Mathematical Analysis and Application
Year of study
165
Number
1
State
US
Pages from
288
Pages to
304
Pages count
17
Documents
BibTex
@article{BUT37345,
author="Josef {Diblík}",
title="Some asymptotic properties of solutions of homogeneous linear systems of ordinary differential equqtions",
annote="Consider the system (1) $x'=A(t)x$, where $t\in I\sb 1=(x\sb 0- \varepsilon,\infty)$, $-\infty0$ and $A$ is a square $n\times n$ real matrix, $A\in C\sp 1(I\sb 1)$. We say that the solution $x(t)=(x\sb 1(t),\ldots,x\sb n(t))$ of (1) is $\alpha$-bounded on $I=\langle x\sb 0,\infty)$ if there exists a vector-function $\alpha(t)=(\alpha\sb 1(t),\ldots,\alpha\sb n(t))$, $\alpha\sb i:I\to(0,\infty)$ such that $\vert x\sb i(t)\vert<\alpha\sb i(t)$ for $t\in I$ and $i=1,2,\ldots,n$. Using a modification of the topological method of T. Ważewski, the author gives sufficient conditions for the existence at least a $k$-parametric class of $\alpha$-bounded on $I$ solutions of (1), where $\alpha$ is a suitable vector-function. These results are applied to the study of the existence of at least a $k$- parametric class of solutions of (1) satisfying $\lim\sb{t\to\infty}x\sb i(t)=0$, $i=1,2,\ldots,n$.",
chapter="37345",
number="1",
volume="165",
year="1992",
month="april",
pages="288--304",
type="journal article - other"
}