Publication detail

Comparative Study of an Optimal Utilization in Case of Composite Columns of HSS and HPC

ŠTRBA, M. KARMAZÍNOVÁ, M.

Original Title

Comparative Study of an Optimal Utilization in Case of Composite Columns of HSS and HPC

English Title

Comparative Study of an Optimal Utilization in Case of Composite Columns of HSS and HPC

Type

journal article in Scopus

Language

en

Original Abstract

Several important parameters in the procedure of an optimal design of load-bearing structures exist in a field of civil engineering. As an example of those parameters the using of an efficient and suitable material can be mentioned. In general, the composite steel-concrete columns are usually designed by using of a steel grade S235 or S355 and with a concrete class up to C40/50. The use of high-strength steel seems to be unsuitable, especially in case of buckling, because the utilization of steel is lower (the extreme fiber stress does not reach a yield limit and a modulus of elasticity stays unchanged). However, the high strength materials can be still advantageously used for an increasing of a load-carrying capacity together with a reduction of a self-weight (in comparison to the columns made of an ordinary class of concrete or steel grade). This paper presents some information about a comparative study in the event of using high-strength steel (HSS) and high-performance concrete (HPC) in case of the design of compressed composite columns. The study is partially based on a previous research on the authors’ workplace (Faculty of Civil Engineering at Brno University of Technology) and it deals with the problems of the design especially in case of the composite columns of a circular and partially encased H cross-section under centric compressive loading according to all the rules given by Eurocode.

English abstract

Several important parameters in the procedure of an optimal design of load-bearing structures exist in a field of civil engineering. As an example of those parameters the using of an efficient and suitable material can be mentioned. In general, the composite steel-concrete columns are usually designed by using of a steel grade S235 or S355 and with a concrete class up to C40/50. The use of high-strength steel seems to be unsuitable, especially in case of buckling, because the utilization of steel is lower (the extreme fiber stress does not reach a yield limit and a modulus of elasticity stays unchanged). However, the high strength materials can be still advantageously used for an increasing of a load-carrying capacity together with a reduction of a self-weight (in comparison to the columns made of an ordinary class of concrete or steel grade). This paper presents some information about a comparative study in the event of using high-strength steel (HSS) and high-performance concrete (HPC) in case of the design of compressed composite columns. The study is partially based on a previous research on the authors’ workplace (Faculty of Civil Engineering at Brno University of Technology) and it deals with the problems of the design especially in case of the composite columns of a circular and partially encased H cross-section under centric compressive loading according to all the rules given by Eurocode.

Keywords

comparative study, composite column, efficient design, high-performance concrete, high-strength steel

Released

27.11.2017

Publisher

North Atlantic University Union

Location

U.S.A.

ISBN

1998-4448

Periodical

International Journal of Mechanics

Year of study

11

Number

1

State

US

Pages from

281

Pages to

287

Pages count

7

Documents

BibTex


@article{BUT142049,
  author="Michal {Štrba} and Marcela {Karmazínová}",
  title="Comparative Study of an Optimal Utilization in Case of Composite Columns of HSS and HPC",
  annote="Several important parameters in the procedure of an optimal design of load-bearing structures exist in a field of civil engineering. As an example of those parameters the using of an efficient and suitable material can be mentioned. In general, the composite steel-concrete columns are usually designed by using of a steel grade S235 or S355 and with a concrete class up to C40/50. The use of high-strength steel seems to be unsuitable, especially in case of buckling, because the utilization of steel is lower (the extreme fiber stress does not reach a yield limit and a modulus of elasticity stays unchanged). However, the high strength materials can be still advantageously used for an increasing of a load-carrying capacity together with a reduction of a self-weight (in comparison to the columns made of an ordinary class of concrete or steel grade). This paper presents some information about a comparative study in the event of using high-strength steel (HSS) and high-performance concrete (HPC) in case of the design of compressed composite columns. The study is partially based on a previous research on the authors’ workplace (Faculty of Civil Engineering at Brno University of Technology) and it deals with the problems of the design especially in case of the composite columns of a circular and partially encased H cross-section under centric compressive loading according to all the rules given by Eurocode.",
  address="North Atlantic University Union",
  chapter="142049",
  institution="North Atlantic University Union",
  number="1",
  volume="11",
  year="2017",
  month="november",
  pages="281--287",
  publisher="North Atlantic University Union",
  type="journal article in Scopus"
}