Publication detail

Exposure to 17 beta-Oestradiol Induces Oxidative Stress in the Non-Oestrogen Receptor Invertebrate Species Eisenia fetida

HEGER, Z. MICHÁLEK, P. GURÁŇ, R. HAVELKOVÁ, B. KOMÍNKOVÁ, M. CERNEI, N. RICHTERA, L. BEKLOVÁ, M. ADAM, V. KÍZEK, R.

Original Title

Exposure to 17 beta-Oestradiol Induces Oxidative Stress in the Non-Oestrogen Receptor Invertebrate Species Eisenia fetida

Type

journal article in Web of Science

Language

English

Original Abstract

Background The environmental impacts of various substances on all levels of organisms are under investigation. Among these substances, endocrine-disrupting compounds (EDCs) present a threat, although the environmental significance of these compounds remains largely unknown. To shed some light on this field, we assessed the effects of 17 beta-oestradiol on the growth, reproduction and formation of free radicals in Eisenia fetida. Methodology/Principal Findings Although the observed effects on growth and survival were relatively weak, a strong impact on reproduction was observed (50.70% inhibition in 100 mu g/kg of E-2). We further demonstrated that the exposure of the earthworm Eisenia fetida to a contaminant of emerging concern, 17 beta-oestradiol (E2), significantly affected the molecules involved in antioxidant defence. Exposure to E2 results in the production of reactive oxygen species (ROS) and the stimulation of antioxidant systems (metallothionein and reduced oxidized glutathione ratio) but not phytochelatins at both the mRNA and translated protein levels. Matrix-assisted laser desorption/ionization (MALDI)-imaging revealed the subcuticular bioaccumulation of oestradiol- 3,4-quinone, altering the levels of local antioxidants in a time-dependent manner. Conclusions/Significance The present study illustrates that although most invertebrates do not possess oestrogen receptors, these organisms can be affected by oestrogen hormones, likely reflecting free diffusion into the cellular microenvironment with subsequent degradation to molecules that undergo redox cycling, producing ROS, thereby increasing environmental contamination that also perilously affects keystone animals, forming lower trophic levels.

Keywords

DISRUPTING COMPOUNDS; METALLOTHIONEIN; WATER; PHARMACEUTICALS; CONTAMINANTS; EXPRESSION; HORMONES; SOILS; OLIGOCHAETA; POLLUTANTS

Authors

HEGER, Z.; MICHÁLEK, P.; GURÁŇ, R.; HAVELKOVÁ, B.; KOMÍNKOVÁ, M.; CERNEI, N.; RICHTERA, L.; BEKLOVÁ, M.; ADAM, V.; KÍZEK, R.

RIV year

2015

Released

22. 12. 2015

Publisher

PLOS

ISBN

1932-6203

Periodical

PLOS ONE

Year of study

10

Number

12

State

United States of America

Pages from

1

Pages to

17

Pages count

17

URL

Full text in the Digital Library

BibTex

@article{BUT123343,
  author="Zbyněk {Heger} and Petr {Michálek} and Roman {Guráň} and Barbora {Havelková} and Markéta {Komínková} and Natalia Vladimirovna {Cernei} and Lukáš {Richtera} and Miroslava {Beklová} and Vojtěch {Adam} and René {Kizek}",
  title="Exposure to 17 beta-Oestradiol Induces Oxidative Stress in the Non-Oestrogen Receptor Invertebrate Species Eisenia fetida",
  journal="PLOS ONE",
  year="2015",
  volume="10",
  number="12",
  pages="1--17",
  doi="10.1371/journal.pone.0145426",
  issn="1932-6203",
  url="http://europepmc.org/articles/PMC4690593?pdf=render"
}