Publication detail

First-order transfer sections with reconnection-less electronically reconfigurable high-pass, all-pass and direct transfer character

ŠOTNER, R. JEŘÁBEK, J. HERENCSÁR, N. PROKOP, R. LAHIRI, A. DOSTÁL, T. VRBA, K.

Original Title

First-order transfer sections with reconnection-less electronically reconfigurable high-pass, all-pass and direct transfer character

Czech Title

Sekce prvního řádu s elektronicky rekonfigurovatelným charakterem (bez přepojení bran) mezi horní propustí, fázovacím článkem a přímým přenosem

English Title

First-order transfer sections with reconnection-less electronically reconfigurable high-pass, all-pass and direct transfer character

Type

journal article

Language

en

Original Abstract

Presented research introduces active filtering circuits which allow change of the transfer type without necessity of reconnection of the input or output terminal that can be very useful for on-chip applications. Our attention is focused on simple first-order filters that allow high-pass response (HP), all-pass response (AP) and also direct transfer (DT) with constant magnitude and phase characteristics between two terminals (input and output) by adjusting of one controllable parameter (current gain B in our case). Useful modification of the well-known current follower transconductance amplifier (CFTA), the so-called Z-copy current-controlled current follower differential input transconductance amplifier (ZC-CCCFDITA) and adjustable current amplifier were utilized in these circuits. Interesting possibilities (crossing between several transfer functions) of presented circuits require different values of B to obtain desired transfer function that is very important for practice and selection of specific way of control. Requirements on value of this continuously controllable gain B differ among presented structures. Theory is supported by simulation and measurement results with behavioral models utilizing commercially available active elements and simulation results with active elements based on CMOS models.

Czech abstract

Uvedený výzkum představuje aktivní filtrační obvody umožňující změnu typu přenosu bez nutnosti přepojení vstupu nebo výstupu, což může být velmi užitečné pro aplikace na čipu. Naše pozornost je zaměřena na jednoduché filtry prvního řádu, které umožňují získat odezvu typu horní propust, fázovací článek a také přímý přenos (s konstantní amplitudovou i fázovou charakteristikou) mezi dvěma terminály (vstup a výstup) pouhou změnou nastavení jednoho řiditelného parametru (v našem případě proudového zesílení). K těmto účelům je v obvodech využita užitečná modifikace známého proudového sledovače s transkonduktanční sekcí (CFTA) nazývaná „z-copy current-controlled current follower differential input transconductance amplifier (ZC-CCCFDITA)“ a řiditelný proudový zesilovač. Tyto zajímavé možnosti (elektronické přecházení mezi několika přenosovými funkcemi) těchto obvodů vyžadují rozdílné hodnoty proudového zesílení (B) k dosažení žádané přenosové funkce. To je důležité pro praxi a výběr specifického způsobu řízení. Teorie je podpořena výsledky simulací a měření s behaviorálními modely využívajícími komerčně dostupné aktivní prvky a simulacemi s pokročilými aktivními prvky na bázi CMOS modelů.

English abstract

Presented research introduces active filtering circuits which allow change of the transfer type without necessity of reconnection of the input or output terminal that can be very useful for on-chip applications. Our attention is focused on simple first-order filters that allow high-pass response (HP), all-pass response (AP) and also direct transfer (DT) with constant magnitude and phase characteristics between two terminals (input and output) by adjusting of one controllable parameter (current gain B in our case). Useful modification of the well-known current follower transconductance amplifier (CFTA), the so-called Z-copy current-controlled current follower differential input transconductance amplifier (ZC-CCCFDITA) and adjustable current amplifier were utilized in these circuits. Interesting possibilities (crossing between several transfer functions) of presented circuits require different values of B to obtain desired transfer function that is very important for practice and selection of specific way of control. Requirements on value of this continuously controllable gain B differ among presented structures. Theory is supported by simulation and measurement results with behavioral models utilizing commercially available active elements and simulation results with active elements based on CMOS models.

Keywords

Active filters, electronic control, reconfiguration, reconnection-less multifunction, Z-copy current-controlled current follower differential input transconductance amplifier, ZC-CCCFDITA

Released

03.03.2016

Publisher

De Gruyter

Location

Bratislava

Pages from

12

Pages to

20

Pages count

9

URL

BibTex


@article{BUT122691,
  author="Roman {Šotner} and Jan {Jeřábek} and Norbert {Herencsár} and Roman {Prokop} and Abhirup {Lahiri} and Tomáš {Dostál} and Kamil {Vrba}",
  title="First-order transfer sections with reconnection-less electronically reconfigurable high-pass, all-pass and direct transfer character",
  annote="Presented research introduces active filtering circuits which allow change of the transfer type without necessity of reconnection of the input or output terminal that can be very useful for on-chip applications. Our attention is focused on simple first-order filters that allow high-pass response (HP), all-pass response (AP) and also direct transfer (DT) with constant magnitude and phase characteristics between two terminals (input and output) by adjusting of one controllable parameter (current gain B in our case). Useful modification of the well-known current follower transconductance amplifier (CFTA), the so-called Z-copy current-controlled current follower differential input transconductance amplifier (ZC-CCCFDITA) and adjustable current amplifier were utilized in these circuits. Interesting possibilities (crossing between several transfer functions) of presented circuits require different values of B to obtain desired transfer function that is very important for practice and selection of specific way of control. Requirements on value of this continuously controllable gain B differ among presented structures. Theory is supported by simulation and measurement results with behavioral models utilizing commercially available active elements and simulation results with active elements based on CMOS models.",
  address="De Gruyter",
  chapter="122691",
  doi="10.1515/jee-2016-0002",
  howpublished="online",
  institution="De Gruyter",
  number="1",
  volume="67",
  year="2016",
  month="march",
  pages="12--20",
  publisher="De Gruyter",
  type="journal article"
}