Publication detail

Multiscale characterization of solar cells

ŠKARVADA, P. ŠKVARENINA, Ľ. SOBOLA, D. MACKŮ, R. TOMÁNEK, P. GRMELA, L.

Original Title

Multiscale characterization of solar cells

Czech Title

Víceúrovňová charakterizace solárních článků

English Title

Multiscale characterization of solar cells

Type

conference paper

Language

en

Original Abstract

The search for alternative sources of energy, including novel structures for photovoltaics, is one of the principal tasks of 21th century development. In the field of photovoltaics there are three generations of solar cells of different structures going from monocrystalline silicon through thin-films to hybrid and organic cells, moreover using nanostructure details. The growing importance of novel material properties of nanostructures in scientific and industrial applications result from inhomogeneities on length scales comparable to the wavelength of light, of lattice vibrations and of electrons. Device dimensions are governed by the need to absorb light in the case of a solar cell, which dictates length scales of microns at least. Engineering aspects impose length scales above the micron scale. Due to the diversity of these structures, their complex study requires the multiscale interpretations which common core includes an integrated approach bridging not only the length scales from macroscale to the atomistic, but also multispectral investigation under different working temperatures. The multiscale study is generally applied to theoretical aspects, but is also applied to experimental characterization. The paper brings methods covering multiscale aspects of optical and electronic studies of these materials. We present the results of a research of the micron and sub-micron inhomogeneities in a crystalline solar cell structure utilizing scanning probe microscopy and noise measurement

Czech abstract

Hledání alternativních zdrojů energie, včetně nových struktur pro fotovoltaiku, je jedním z hlavních úkolů vývoje 21. století. V oblasti fotovoltaiky jsou tři generace solárních článků různých struktur jdoucích od monokrystalického křemíku po tenké vrstvy hybridních a organických článků, navíc s použitím nanostrukturních detailů. Rostoucí význam nových materiálových vlastností nanostruktur ve vědeckých a průmyslových aplikacích vyplývá z nehomogenit o rozměrech srovnatelných s vlnovou délkou světla, z mřížkových elektronových vibrací. Rozměry zařízení jsou řízeny nutností absorbovat světlo v případě solárního článku, což je na úrovní nejméně mikrometrů, zatímco inženýrské aspekty vyžadují délky nad 1 mm.. Vzhledem k různorodosti těchto struktur, jejich komplexní studie vyžaduje víceškálové interpretace, jejichž společným jádrem je integrovaný přístup k přemostění délek od makroměřítka po atomistické, ale i multispektrální zkoumání závislosti na pracovních teplotách. Víceúrovňové studie jsou obecně aplikovány na teoretické aspekty, ale začínají se používat na experimentální charakterizace. Článek přináší metody pokrývající víceškálových hlediska optických a elektronických studií materiálů. Prezentuje výsledky výzkumu mikronových a sub-mikronových nehomogenit v krystalické struktuře solárního článku při využití rastrovací sondové mikroskopie a šumových měřeních.

English abstract

The search for alternative sources of energy, including novel structures for photovoltaics, is one of the principal tasks of 21th century development. In the field of photovoltaics there are three generations of solar cells of different structures going from monocrystalline silicon through thin-films to hybrid and organic cells, moreover using nanostructure details. The growing importance of novel material properties of nanostructures in scientific and industrial applications result from inhomogeneities on length scales comparable to the wavelength of light, of lattice vibrations and of electrons. Device dimensions are governed by the need to absorb light in the case of a solar cell, which dictates length scales of microns at least. Engineering aspects impose length scales above the micron scale. Due to the diversity of these structures, their complex study requires the multiscale interpretations which common core includes an integrated approach bridging not only the length scales from macroscale to the atomistic, but also multispectral investigation under different working temperatures. The multiscale study is generally applied to theoretical aspects, but is also applied to experimental characterization. The paper brings methods covering multiscale aspects of optical and electronic studies of these materials. We present the results of a research of the micron and sub-micron inhomogeneities in a crystalline solar cell structure utilizing scanning probe microscopy and noise measurement

Keywords

Solar cell, defect, noise, multiscale, characterization

RIV year

2015

Released

23.11.2015

Publisher

Comenius University

Location

Bratislava, Slovensko

ISBN

978-80-223-3975-9

Book

Progress in Applied Surface, Interface and Thin-film Science 2015

Edition number

1

Pages from

148

Pages to

151

Pages count

4

BibTex


@inproceedings{BUT118737,
  author="Pavel {Škarvada} and Ľubomír {Škvarenina} and Dinara {Sobola} and Robert {Macků} and Pavel {Tománek} and Lubomír {Grmela}",
  title="Multiscale characterization of solar cells",
  annote="The search for alternative sources of energy, including novel structures for photovoltaics, is one of the principal tasks of 21th century development. In the field of photovoltaics there are three generations of solar cells of different structures going from monocrystalline silicon through thin-films to hybrid and organic cells, moreover using nanostructure details. 
The growing importance of novel material properties of nanostructures in scientific and industrial applications result from inhomogeneities on length scales comparable to the wavelength of light, of lattice vibrations and of electrons. Device dimensions are governed by the need to absorb light in the case of a solar cell, which dictates length scales of microns at least. Engineering aspects impose length scales above the micron scale. Due to the diversity of these structures, their complex study requires the multiscale interpretations which common core includes an integrated approach bridging not only the length scales from macroscale to the atomistic, but also multispectral investigation under different working temperatures. The multiscale study is generally applied to theoretical aspects, but is also applied to experimental characterization.  
The paper brings methods covering multiscale aspects of optical and electronic studies of these materials. We present the results of a research of the micron and sub-micron inhomogeneities in a crystalline solar cell structure utilizing scanning probe microscopy and noise measurement

",
  address="Comenius University",
  booktitle="Progress in Applied Surface, Interface and Thin-film Science 2015",
  chapter="118737",
  howpublished="print",
  institution="Comenius University",
  year="2015",
  month="november",
  pages="148--151",
  publisher="Comenius University",
  type="conference paper"
}