Publication detail

Optical and electrical detection and localization of solar cell defects on microscale

ŠKARVADA, P. MACKŮ, R. DALLAEVA, D. PROKOPYEVA, E. TOMÁNEK, P. GRMELA, L. SMITH, S.

Original Title

Optical and electrical detection and localization of solar cell defects on microscale

Czech Title

Optická a elektrická detekce a lokalizace defektů solárních článků v mikroměřítku

English Title

Optical and electrical detection and localization of solar cell defects on microscale

Type

journal article

Language

en

Original Abstract

Monocrystalline silicon wafer is up-to-date most used material for the fabrication of solar cells. The recent investigation shows that the quality of cells is often degraded by structural defects emerging during processing steps. Hence the paper gives first an overview of solar cell efficiency investigation on macroscale. Then a detection and microscale localization of tiny local defects in solar cell structures which evidently affect electrical and photoelectrical properties of the cells is targeted. The local defects can be classified as microfractures, precipitates and other material structure inhomogeneities. Detection and localization of the defects in the structure and the assigning of particular defects to corresponding degradation of photoelectrical parameters are key points for solar cell lifetime and efficiency improvement. Although the breakdown can be evident in current-voltage plot, the localization of defects on the sample has to be provided by microscopic investigations as well as by defects light emission measurement under electrical bias conditions. The experimental results obtained from samples where the defects were microscopically repaired by focused ion beam are presented. Electrical and photoelectrical properties of sample before and after milling processing are also discussed.

Czech abstract

Wafe monokrystalického křemen se dodnes nejčastěji využívá v solárních článcích. Nedávné výzkumy ukazují, že kvalita článků je často znehodnocena strukturálními defekty, které pocházejí zprocesu výroby. Článek se nejprve zabývá přehledem makroskopických metod pro zjišťování účinnosti článků. Poté je ukázána mikroskopická detekce a lokalzace maličkých defektů, které zřejmě ovlivňují elektrické a fotoelektrické vlastnosti článků. Tyto lokální defekty jsou mikroskopické lomy, precipitáty a materiálové nehomogenity. Detekce a lokalizace defektů ve struktuře a jejich přiřazení odpovídajícím příčinám zhoršení fotoelektrických parametrů jsou klíčovým bodem pro zlepšení životnosti a účinnosti článků. Ačkoliv ve V-A závislosti je průraz patrný, není lokalizace odpovídajícího defektu ve struktuře jednoduchá. Experimentání výsledky dosažené se vzorky, na nichž se podařilo mikroskopicky lokalizovat defekt i jeho povahu, ukazují, že je možné tento defekt odstranit pomocí fokusovaného intového paprsku, čímž se zlepší účinnost článku. Elektrická a fotoelektrická měření před a po odstranšní defektu prokázala použitelnost navržené meotdy.

English abstract

Monocrystalline silicon wafer is up-to-date most used material for the fabrication of solar cells. The recent investigation shows that the quality of cells is often degraded by structural defects emerging during processing steps. Hence the paper gives first an overview of solar cell efficiency investigation on macroscale. Then a detection and microscale localization of tiny local defects in solar cell structures which evidently affect electrical and photoelectrical properties of the cells is targeted. The local defects can be classified as microfractures, precipitates and other material structure inhomogeneities. Detection and localization of the defects in the structure and the assigning of particular defects to corresponding degradation of photoelectrical parameters are key points for solar cell lifetime and efficiency improvement. Although the breakdown can be evident in current-voltage plot, the localization of defects on the sample has to be provided by microscopic investigations as well as by defects light emission measurement under electrical bias conditions. The experimental results obtained from samples where the defects were microscopically repaired by focused ion beam are presented. Electrical and photoelectrical properties of sample before and after milling processing are also discussed.

Keywords

solar cell, silicon, monocrystalline, defect, localization, detection, efficiency

RIV year

2013

Released

24.09.2013

Publisher

SPIE

Location

Bellingham USA

Pages from

8825071

Pages to

88255077

Pages count

8

BibTex


@article{BUT101902,
  author="Pavel {Škarvada} and Robert {Macků} and Dinara {Sobola} and Elena {Prokopyeva} and Pavel {Tománek} and Lubomír {Grmela} and Steve J. {Smith}",
  title="Optical and electrical detection and localization of solar cell defects on microscale",
  annote="Monocrystalline silicon wafer is up-to-date most used material for the fabrication of solar cells. The recent investigation shows that the quality of cells is often degraded by structural defects emerging during processing steps. Hence the paper gives first an overview of solar cell efficiency investigation on macroscale. Then a detection and microscale localization of tiny local defects in solar cell structures which evidently affect electrical and photoelectrical properties of the cells is targeted. The local defects can be classified as microfractures, precipitates and other material structure inhomogeneities. Detection and localization of the defects in the structure and the assigning of particular defects to corresponding degradation of photoelectrical parameters are key points for solar cell lifetime and efficiency improvement. Although the breakdown can be evident in current-voltage plot, the localization of defects on the sample has to be provided by microscopic investigations as well as by defects light emission measurement under electrical bias conditions. The experimental results obtained from samples where the defects were microscopically repaired by focused ion beam are presented. Electrical and photoelectrical properties of sample before and after milling processing are also discussed.",
  address="SPIE",
  chapter="101902",
  doi="10.1117/12.2023265",
  institution="SPIE",
  number="8825",
  volume="8825",
  year="2013",
  month="september",
  pages="8825071--88255077",
  publisher="SPIE",
  type="journal article"
}