Publication detail

Fractional-order chaotic memory with wideband constant phase elements

PETRŽELA, J.

Original Title

Fractional-order chaotic memory with wideband constant phase elements

English Title

Fractional-order chaotic memory with wideband constant phase elements

Type

journal article in Web of Science

Language

en

Original Abstract

This paper provides readers with three partial results that are mutually connected. Firstly, the gallery of the so-called constant phase elements (CPE) dedicated for the wideband applications is presented. CPEs are calculated for 9° (decimal orders) and 10° phase steps including ¼, ½, and ¾ orders, which are the most used mathematical orders between zero and one in practice. For each phase shift, all necessary numerical values to design fully passive RC ladder two-terminal circuits are provided. Individual CPEs are easily distinguishable because of a very high accuracy; maximal phase error is less than 1.5° in wide frequency range beginning with 3 Hz and ending with 1 MHz. Secondly, dynamics of ternary memory composed by a series connection of two resonant tunneling diodes is investigated and, consequently, a robust chaotic behavior is discovered and reported. Finally, CPEs are directly used for realization of fractional-order (FO) ternary memory as lumped chaotic oscillator. Existence of structurally stable strange attractors for different orders is proved, both by numerical analyzed and experimental measurement.

English abstract

This paper provides readers with three partial results that are mutually connected. Firstly, the gallery of the so-called constant phase elements (CPE) dedicated for the wideband applications is presented. CPEs are calculated for 9° (decimal orders) and 10° phase steps including ¼, ½, and ¾ orders, which are the most used mathematical orders between zero and one in practice. For each phase shift, all necessary numerical values to design fully passive RC ladder two-terminal circuits are provided. Individual CPEs are easily distinguishable because of a very high accuracy; maximal phase error is less than 1.5° in wide frequency range beginning with 3 Hz and ending with 1 MHz. Secondly, dynamics of ternary memory composed by a series connection of two resonant tunneling diodes is investigated and, consequently, a robust chaotic behavior is discovered and reported. Finally, CPEs are directly used for realization of fractional-order (FO) ternary memory as lumped chaotic oscillator. Existence of structurally stable strange attractors for different orders is proved, both by numerical analyzed and experimental measurement.

Keywords

approximate entropy; admittance function synthesis; constant phase element; chaotic oscillator; fractional-order; frequency response; ternary memory; zeroes and poles

Released

09.04.2020

Publisher

MDPI

Location

Basel, Switzerland

Pages from

422

Pages to

455

Pages count

33

URL

Full text in the Digital Library

BibTex


@article{BUT163375,
  author="Jiří {Petržela}",
  title="Fractional-order chaotic memory with wideband constant phase elements",
  annote="This paper provides readers with three partial results that are mutually connected. Firstly, the gallery of the so-called constant phase elements (CPE) dedicated for the wideband applications is presented. CPEs are calculated for 9° (decimal orders) and 10° phase steps including ¼, ½, and ¾ orders, which are the most used mathematical orders between zero and one in practice. For each phase shift, all necessary numerical values to design fully passive RC ladder two-terminal circuits are provided. Individual CPEs are easily distinguishable because of a very high accuracy; maximal phase error is less than 1.5° in wide frequency range beginning with 3 Hz and ending with 1 MHz. Secondly, dynamics of ternary memory composed by a series connection of two resonant tunneling diodes is investigated and, consequently, a robust chaotic behavior is discovered and reported. Finally, CPEs are directly used for realization of fractional-order (FO) ternary memory as lumped chaotic oscillator. Existence of structurally stable strange attractors for different orders is proved, both by numerical analyzed and experimental measurement.",
  address="MDPI",
  chapter="163375",
  doi="10.3390/e22040422",
  howpublished="online",
  institution="MDPI",
  number="4",
  volume="22",
  year="2020",
  month="april",
  pages="422--455",
  publisher="MDPI",
  type="journal article in Web of Science"
}