Publication detail

Progress toward the development of single nanowire-based arrays for gas sensing applications

CHMELA, O.

Original Title

Progress toward the development of single nanowire-based arrays for gas sensing applications

English Title

Progress toward the development of single nanowire-based arrays for gas sensing applications

Type

dissertation

Language

en

Original Abstract

This thesis presents the development of silicon-based platforms for selective integration of semiconducting metal oxide (MOX) nanostructures and their use as highly sensitive and selective elements for the detection of gas analytes in prospective mobile devices. Semiconducting MOX nanostructures, for instance nanowires, have proved better gas sensing properties including sensitivity, stability and to a certain extent also selectivity as compared to their bulk counterparts. The use of single (or few) nanowire structures connected in parallel has also shown to be the ideal architecture to achieve well-defined conduction channel easy to modulate by the gas-solid interactions. However, yet current methods for the integration of single nanowire structures in functional devices represent a technological challenge, with most of the methods needing the assistance of techniques, such as focused-ion beam (FIB), which restricts the scalability of the process and increases the cost and time of fabrication. In this context, this work is focused on the search and optimization of technological processes to fabricate gas sensing systems based on arrays of single semiconducting nanowires. In this thesis, three versions of electrode platforms were developed for the selective integration of single gas-sensitive metal oxide nanowires. State-of-the-art multistep throughput fabrication techniques, as well as electron-beam lithography (nanofabrication), were used as crucial fabrication technologies allowing the development of arrays with faced nanoelectrodes and other functional nanostructures. Results show the fabrication of electrode platform with faced nanoelectrodes (100 – 300 nm width) framed in narrow dielectric windows close to the nanowire diameter (100 – 200 nm approx.). These nanoelectrodes were used as both mechanical support to align the single nanowire, and electrical contacts to measure the electrical change along the nanowire during gas detection. Results also include the optimization of techniques for removal and redeposition of nanowires to achieve single nanowire interconnections in the array of parallel electrodes using an alternating electric field as a simple and effective technique for nanowires alignment (dielectrophoresis). The validation of these systems toward various gaseous species (oxidizing and reducing gases) was performed using non-functionalized and Pt-functionalized WO3 nanowires synthesized by aerosol-assisted chemical vapor deposition (AACVD) and backside ceramic heaters (with the operating temperature at 250 °C) assembled on TO-8 package. The sensing parameters of such systems showed better sensing responses in resistive regime to nitrogen dioxide (NO2) and ethanol (EtOH) than their counterparts based on multiple nanowire-based films. The last version of gas sensing systems developed in this thesis (described as third chip generation) includes a third insulated electrode buried under the gas sensitive nanowire for enhanced gas sensing regime. Gas sensing tests of this system to hydrogen (H2) and nitrogen dioxide (NO2) corroborated the enhanced functionality of these systems and the modulation of sensor response by applying external electrical stimuli on the buried electrode.

English abstract

This thesis presents the development of silicon-based platforms for selective integration of semiconducting metal oxide (MOX) nanostructures and their use as highly sensitive and selective elements for the detection of gas analytes in prospective mobile devices. Semiconducting MOX nanostructures, for instance nanowires, have proved better gas sensing properties including sensitivity, stability and to a certain extent also selectivity as compared to their bulk counterparts. The use of single (or few) nanowire structures connected in parallel has also shown to be the ideal architecture to achieve well-defined conduction channel easy to modulate by the gas-solid interactions. However, yet current methods for the integration of single nanowire structures in functional devices represent a technological challenge, with most of the methods needing the assistance of techniques, such as focused-ion beam (FIB), which restricts the scalability of the process and increases the cost and time of fabrication. In this context, this work is focused on the search and optimization of technological processes to fabricate gas sensing systems based on arrays of single semiconducting nanowires. In this thesis, three versions of electrode platforms were developed for the selective integration of single gas-sensitive metal oxide nanowires. State-of-the-art multistep throughput fabrication techniques, as well as electron-beam lithography (nanofabrication), were used as crucial fabrication technologies allowing the development of arrays with faced nanoelectrodes and other functional nanostructures. Results show the fabrication of electrode platform with faced nanoelectrodes (100 – 300 nm width) framed in narrow dielectric windows close to the nanowire diameter (100 – 200 nm approx.). These nanoelectrodes were used as both mechanical support to align the single nanowire, and electrical contacts to measure the electrical change along the nanowire during gas detection. Results also include the optimization of techniques for removal and redeposition of nanowires to achieve single nanowire interconnections in the array of parallel electrodes using an alternating electric field as a simple and effective technique for nanowires alignment (dielectrophoresis). The validation of these systems toward various gaseous species (oxidizing and reducing gases) was performed using non-functionalized and Pt-functionalized WO3 nanowires synthesized by aerosol-assisted chemical vapor deposition (AACVD) and backside ceramic heaters (with the operating temperature at 250 °C) assembled on TO-8 package. The sensing parameters of such systems showed better sensing responses in resistive regime to nitrogen dioxide (NO2) and ethanol (EtOH) than their counterparts based on multiple nanowire-based films. The last version of gas sensing systems developed in this thesis (described as third chip generation) includes a third insulated electrode buried under the gas sensitive nanowire for enhanced gas sensing regime. Gas sensing tests of this system to hydrogen (H2) and nitrogen dioxide (NO2) corroborated the enhanced functionality of these systems and the modulation of sensor response by applying external electrical stimuli on the buried electrode.

Keywords

Electrode platform, nanoelectrodes, array of single nanowires, nanowire alignment, sensing system, gas detection.

Released

12.09.2019

Location

Brno university of technology

Pages from

1

Pages to

199

Pages count

199

URL

BibTex


@phdthesis{BUT161271,
  author="Ondřej {Chmela}",
  title="Progress toward the development of single nanowire-based arrays for gas sensing applications",
  annote="This thesis presents the development of silicon-based platforms for selective integration of semiconducting metal oxide (MOX) nanostructures and their use as highly sensitive and selective elements for the detection of gas analytes in prospective mobile devices. Semiconducting MOX nanostructures, for instance nanowires, have proved better gas sensing properties including sensitivity, stability and to a certain extent also selectivity as compared to their bulk counterparts. The use of single (or few) nanowire structures connected in parallel has also shown to be the ideal architecture to achieve well-defined conduction channel easy to modulate by the gas-solid interactions. However, yet current methods for the integration of single nanowire structures in functional devices represent a technological challenge, with most of the methods needing the assistance of techniques, such as focused-ion beam (FIB), which restricts the scalability of the process and increases the cost and time of fabrication. In this context, this work is focused on the search and optimization of technological processes to fabricate gas sensing systems based on arrays of single semiconducting nanowires. 
In this thesis, three versions of electrode platforms were developed for the selective integration of single gas-sensitive metal oxide nanowires. State-of-the-art multistep throughput fabrication techniques, as well as electron-beam lithography (nanofabrication), were used as crucial fabrication technologies allowing the development of arrays with faced nanoelectrodes and other functional nanostructures. Results show the fabrication of electrode platform with faced nanoelectrodes (100 – 300 nm width) framed in narrow dielectric windows close to the nanowire diameter (100 – 200 nm approx.). These nanoelectrodes were used as both mechanical support to align the single nanowire, and electrical contacts to measure the electrical change along the nanowire during gas detection. Results also include the optimization of techniques for removal and redeposition of nanowires to achieve single nanowire interconnections in the array of parallel electrodes using an alternating electric field as a simple and effective technique for nanowires alignment (dielectrophoresis). 
The validation of these systems toward various gaseous species (oxidizing and reducing gases) was performed using non-functionalized and Pt-functionalized WO3 nanowires synthesized by aerosol-assisted chemical vapor deposition (AACVD) and backside ceramic heaters (with the operating temperature at 250 °C) assembled on TO-8 package. The sensing parameters of such systems showed better sensing responses in resistive regime to nitrogen dioxide (NO2) and ethanol (EtOH) than their counterparts based on multiple nanowire-based films. The last version of gas sensing systems developed in this thesis (described as third chip generation) includes a third insulated electrode buried under the gas sensitive nanowire for enhanced gas sensing regime. Gas sensing tests of this system to hydrogen (H2) and nitrogen dioxide (NO2) corroborated the enhanced functionality of these systems and the modulation of sensor response by applying external electrical stimuli on the buried electrode.",
  chapter="161271",
  howpublished="print",
  year="2019",
  month="september",
  pages="1--199",
  type="dissertation"
}