Publication detail

Laminar-turbulent transition in a constricted tube: Comparison of Reynolds-averaged Navier–Stokes turbulence models and large eddy simulation with experiments

ELCNER, J. LÍZAL, F. JEDELSKÝ, J. TUHOVČÁK, J. JÍCHA, M.

Original Title

Laminar-turbulent transition in a constricted tube: Comparison of Reynolds-averaged Navier–Stokes turbulence models and large eddy simulation with experiments

English Title

Laminar-turbulent transition in a constricted tube: Comparison of Reynolds-averaged Navier–Stokes turbulence models and large eddy simulation with experiments

Type

journal article

Language

en

Original Abstract

Constricted tubes appear in many engineering as well as biological systems such as blood vessels or pulmonary airways. The aim of this article is to test the ability of different turbulence models to predict the flow field and deposition of parti- cles in a constricted tube. The constricted geometry of Ahmed and Giddens was employed to compare various numeri- cal approaches. Two large eddy simulations and several Reynolds-averaged Navier–Stokes models were used for calculations using the Star-CCM+ commercial solver. The performance of these models was compared with the experiments and other published studies. For selected turbulence models, deposition of particles with different Stokes numbers using Lagrangian multiphase model was enabled. The results show that large eddy simulation best predicts the transition from laminar to turbulent flow in terms of mean axial velocity, and similarly does also standard low-Reynolds k–e model. The comparison of deposition fractions shows substantial differences among the models, especially for the smallest particles. It was demonstrated that even a simple stenosed smooth tube is a very intricate problem for the pres- ent computational fluid dynamics models; therefore, to get reliable results, numerical models need to be validated for the same geometry and similar conditions.

English abstract

Constricted tubes appear in many engineering as well as biological systems such as blood vessels or pulmonary airways. The aim of this article is to test the ability of different turbulence models to predict the flow field and deposition of parti- cles in a constricted tube. The constricted geometry of Ahmed and Giddens was employed to compare various numeri- cal approaches. Two large eddy simulations and several Reynolds-averaged Navier–Stokes models were used for calculations using the Star-CCM+ commercial solver. The performance of these models was compared with the experiments and other published studies. For selected turbulence models, deposition of particles with different Stokes numbers using Lagrangian multiphase model was enabled. The results show that large eddy simulation best predicts the transition from laminar to turbulent flow in terms of mean axial velocity, and similarly does also standard low-Reynolds k–e model. The comparison of deposition fractions shows substantial differences among the models, especially for the smallest particles. It was demonstrated that even a simple stenosed smooth tube is a very intricate problem for the pres- ent computational fluid dynamics models; therefore, to get reliable results, numerical models need to be validated for the same geometry and similar conditions.

Keywords

Computational fluid mechanics, turbulence models, Reynolds-averaged Navier–Stokes, large eddy simulation, constricted tube, stenosis, transition, laminar to turbulent, numerical simulations, particle deposition

Released

27.05.2019

Publisher

SAGE Journals

Pages from

1

Pages to

17

Pages count

17

URL

Full text in the Digital Library

BibTex


@article{BUT157111,
  author="Jakub {Elcner} and František {Lízal} and Jan {Jedelský} and Ján {Tuhovčák} and Miroslav {Jícha}",
  title="Laminar-turbulent transition in a constricted tube: Comparison of Reynolds-averaged Navier–Stokes turbulence models and large eddy simulation with experiments",
  annote="Constricted tubes appear in many engineering as well as biological systems such as blood vessels or pulmonary airways. The aim of this article is to test the ability of different turbulence models to predict the flow field and deposition of parti- cles in a constricted tube. The constricted geometry of Ahmed and Giddens was employed to compare various numeri- cal approaches. Two large eddy simulations and several Reynolds-averaged Navier–Stokes models were used for calculations using the Star-CCM+ commercial solver. The performance of these models was compared with the experiments and other published studies. For selected turbulence models, deposition of particles with different Stokes numbers using Lagrangian multiphase model was enabled. The results show that large eddy simulation best predicts the transition from laminar to turbulent flow in terms of mean axial velocity, and similarly does also standard low-Reynolds k–e model. The comparison of deposition fractions shows substantial differences among the models, especially for the smallest particles. It was demonstrated that even a simple stenosed smooth tube is a very intricate problem for the pres- ent computational fluid dynamics models; therefore, to get reliable results, numerical models need to be validated for the same geometry and similar conditions.",
  address="SAGE Journals",
  chapter="157111",
  doi="10.1177/1687814019852261",
  howpublished="online",
  institution="SAGE Journals",
  number="5",
  volume="11",
  year="2019",
  month="may",
  pages="1--17",
  publisher="SAGE Journals",
  type="journal article"
}