Publication detail

Exponential Stability of Linear Discrete Systems with Delay

DIBLÍK, J. KHUSAINOV, D. RŮŽIČKOVÁ, M.

Original Title

Exponential Stability of Linear Discrete Systems with Delay

English Title

Exponential Stability of Linear Discrete Systems with Delay

Type

conference paper

Language

en

Original Abstract

The paper studies the exponential stability to a linear system of difference equations with delay x (k + 1) = A(k)x (k) + B(k)x (k - m(k)) , k = 0, 1, ... where A(k), B(k) are square constant matrices. New sufficient conditions for exponential stability are derived and illustrated by an example.

English abstract

The paper studies the exponential stability to a linear system of difference equations with delay x (k + 1) = A(k)x (k) + B(k)x (k - m(k)) , k = 0, 1, ... where A(k), B(k) are square constant matrices. New sufficient conditions for exponential stability are derived and illustrated by an example.

Keywords

exponential stability; linear system; difference equation; delay

Released

21.07.2018

Publisher

American Institute of Physics

Location

AMER INST PHYSICS, 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA

ISBN

978-0-7354-1690-1

Book

INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017)

Pages from

430004-1

Pages to

430004-4

Pages count

4

URL

BibTex


@inproceedings{BUT150438,
  author="Josef {Diblík} and Denys {Khusainov} and Miroslava {Růžičková}",
  title="Exponential Stability of Linear Discrete Systems with Delay",
  annote="The paper studies the exponential stability to a linear system of difference equations with delay x (k + 1) = A(k)x (k) + B(k)x (k - m(k)) ,  k = 0, 1, ... where A(k), B(k) are square constant matrices. New sufficient conditions for exponential stability are derived and illustrated by an example.",
  address="American Institute of Physics",
  booktitle="INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017)",
  chapter="150438",
  doi="10.1063/1.5044019",
  howpublished="online",
  institution="American Institute of Physics",
  year="2018",
  month="july",
  pages="430004-1--430004-4",
  publisher="American Institute of Physics",
  type="conference paper"
}