Publication detail

ECG features and methods for automatic classification of ventricular premature and ischemic heartbeats: A comprehensive experimental study

MARŠÁNOVÁ, L. RONZHINA, M. SMÍŠEK, R. VÍTEK, M. NĚMCOVÁ, A. SMITAL, L. NOVÁKOVÁ, M.

Original Title

ECG features and methods for automatic classification of ventricular premature and ischemic heartbeats: A comprehensive experimental study

English Title

ECG features and methods for automatic classification of ventricular premature and ischemic heartbeats: A comprehensive experimental study

Type

journal article in Web of Science

Language

en

Original Abstract

Accurate detection of cardiac pathological events is an important part of electrocardiogram (ECG) evaluation and subsequent correct treatment of the patient. The paper introduces the results of a complex study, where various aspects of automatic classification of various heartbeat types have been addressed. Particularly, non-ischemic, ischemic (of two different grades) and subsequent ventricular premature beats were classified in this combination for the first time. ECGs recorded in rabbit isolated hearts under non-ischemic and ischemic conditions were used for analysis. Various morphological and spectral features (both commonly used and newly proposed) as well as classification models were tested on the same data set. It was found that: a) morphological features are generally more suitable than spectral ones; b) successful results (accuracy up to 98.3% and 96.2% for morphological and spectral features, respectively) can be achieved using features calculated without time-consuming delineation of QRS-T segment; c) use of reduced number of features (3 to 14 features) for model training allows achieving similar or even better performance as compared to the whole feature sets (10 to 29 features); d) k-nearest neighbours and support vector machine seem to be the most appropriate models (accuracy up to 98.6% and 93.5%, respectively).

English abstract

Accurate detection of cardiac pathological events is an important part of electrocardiogram (ECG) evaluation and subsequent correct treatment of the patient. The paper introduces the results of a complex study, where various aspects of automatic classification of various heartbeat types have been addressed. Particularly, non-ischemic, ischemic (of two different grades) and subsequent ventricular premature beats were classified in this combination for the first time. ECGs recorded in rabbit isolated hearts under non-ischemic and ischemic conditions were used for analysis. Various morphological and spectral features (both commonly used and newly proposed) as well as classification models were tested on the same data set. It was found that: a) morphological features are generally more suitable than spectral ones; b) successful results (accuracy up to 98.3% and 96.2% for morphological and spectral features, respectively) can be achieved using features calculated without time-consuming delineation of QRS-T segment; c) use of reduced number of features (3 to 14 features) for model training allows achieving similar or even better performance as compared to the whole feature sets (10 to 29 features); d) k-nearest neighbours and support vector machine seem to be the most appropriate models (accuracy up to 98.6% and 93.5%, respectively).

Keywords

Automatic heartbeat classification; myocardial ischemia; ventricular premature beats; ECG; morphological features; spectral features; discriminant function; naive Bayes classifier; support vector machine; k-nearest neighbors; rabbit isolated heart

Released

11.09.2017

Publisher

Nature

Pages from

1

Pages to

11

Pages count

11

URL

Full text in the Digital Library

BibTex


@article{BUT139580,
  author="Lucie {Maršánová} and Marina {Ronzhina} and Radovan {Smíšek} and Martin {Vítek} and Andrea {Němcová} and Lukáš {Smital} and Marie {Nováková}",
  title="ECG features and methods for automatic classification of ventricular premature and ischemic heartbeats: A comprehensive experimental study",
  annote="Accurate detection of cardiac pathological events is an important part of electrocardiogram (ECG) evaluation and subsequent correct treatment of the patient. The paper introduces the results of a complex study, where various aspects of automatic classification of various heartbeat types have been addressed. Particularly, non-ischemic, ischemic (of two different grades) and subsequent ventricular premature beats were classified in this combination for the first time. ECGs recorded in rabbit isolated hearts under non-ischemic and ischemic conditions were used for analysis. Various morphological and spectral features (both commonly used and newly proposed) as well as classification models were tested on the same data set. It was found that: a) morphological features are generally more suitable than spectral ones; b) successful results (accuracy up to 98.3% and 96.2% for morphological and spectral features, respectively) can be achieved using features calculated without time-consuming delineation of QRS-T segment; c) use of reduced number of features (3 to 14 features) for model training allows achieving similar or even better performance as compared to the whole feature sets (10 to 29 features); d) k-nearest neighbours and support vector machine seem to be the most appropriate models (accuracy up to 98.6% and 93.5%, respectively).",
  address="Nature",
  chapter="139580",
  doi="10.1038/s41598-017-10942-6",
  howpublished="online",
  institution="Nature",
  number="7",
  year="2017",
  month="september",
  pages="1--11",
  publisher="Nature",
  type="journal article in Web of Science"
}