Publication detail

Splicing and shaping of the special optical fibers

JELÍNEK, M. HLAVATÝ, V. HRABINA, J. MIKEL, B.

Original Title

Splicing and shaping of the special optical fibers

English Title

Splicing and shaping of the special optical fibers

Type

conference paper

Language

en

Original Abstract

We present development of new methods and techniques of the splicing and shaping optical fibers. We developed new techniques of splicing for standard Single Mode (SM) and Multimode (MM) optical fibers and optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by light adjustment of our developed techniques. Adjustment of the splicing process has to be prepared for any new optical fibers and new fibers combinations. The splicing of the same types of fibers from different manufacturers has to adjust too. We are able to splice PCF with standard telecommunication fiber with attenuation up to 2 dB. The method is also presented. In the next step we developed techniques to tapering optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. Development of these new optical fibers splicing techniques and methods are made with respect to using these fibers to another research and development in the field of optical fibers sensors, laser frequency stabilization and laser interferometry based on optical fibers. Especially for the field of laser frequency stabilization we developed and present new techniques to closing microstructured fibers with gases inside.

English abstract

We present development of new methods and techniques of the splicing and shaping optical fibers. We developed new techniques of splicing for standard Single Mode (SM) and Multimode (MM) optical fibers and optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by light adjustment of our developed techniques. Adjustment of the splicing process has to be prepared for any new optical fibers and new fibers combinations. The splicing of the same types of fibers from different manufacturers has to adjust too. We are able to splice PCF with standard telecommunication fiber with attenuation up to 2 dB. The method is also presented. In the next step we developed techniques to tapering optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. Development of these new optical fibers splicing techniques and methods are made with respect to using these fibers to another research and development in the field of optical fibers sensors, laser frequency stabilization and laser interferometry based on optical fibers. Especially for the field of laser frequency stabilization we developed and present new techniques to closing microstructured fibers with gases inside.

Keywords

microstructured fibers, optical sensors, shaping optical fibers, splicing optical fibers, tapering optical fibers

Released

16.05.2017

Publisher

SPIE

Location

Prague, Czech Republic

ISBN

9781510609648

Book

Proc. SPIE 10231, Optical Sensors 2017

Edition

Volume 10231

Pages from

74

Pages to

78

Pages count

6

BibTex


@inproceedings{BUT138440,
  author="Michal {Jelínek} and Václav {Hlavatý} and Jan {Hrabina} and Břetislav {Mikel}",
  title="Splicing and shaping of the special optical fibers",
  annote="We present development of new methods and techniques of the splicing and shaping optical fibers. We developed new techniques of splicing for standard Single Mode (SM) and Multimode (MM) optical fibers and optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by light adjustment of our developed techniques. Adjustment of the splicing process has to be prepared for any new optical fibers and new fibers combinations. The splicing of the same types of fibers from different manufacturers has to adjust too. We are able to splice PCF with standard telecommunication fiber with attenuation up to 2 dB. The method is also presented. In the next step we developed techniques to tapering optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. Development of these new optical fibers splicing techniques and methods are made with respect to using these fibers to another research and development in the field of optical fibers sensors, laser frequency stabilization and laser interferometry based on optical fibers. Especially for the field of laser frequency stabilization we developed and present new techniques to closing microstructured fibers with gases inside.",
  address="SPIE",
  booktitle="Proc. SPIE 10231, Optical Sensors 2017",
  chapter="138440",
  doi="10.1117/12.2265771",
  edition="Volume 10231",
  howpublished="online",
  institution="SPIE",
  number="10231 1Y",
  year="2017",
  month="may",
  pages="74--78",
  publisher="SPIE",
  type="conference paper"
}