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GEOMETRICKÉ ALGEBRY A JEJICH APLIKACE

GEOMETRIC ALGEBRAS AND THEIR APPLICATIONS

HABILITAČŃI PRÁCE
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1 Introduction and motivation

In the most general meaning, by a geometric algebra we mean an algebraic represen-

tation of a geometric concept. The basic examples are the Grassmann algebra and

the Hamilton’s algebra of quaternions. The former algebra can be used to describe

vector subspaces by so called Plücker embedding while the latter can be used to repre-

sent rotations in the 3D space. The two algebras were unified later by W. H. Clifford

into one geometric algebra, and this is what we usually mean by a geometric algebra

nowadays. Hence, in the algebraic sense, a geometric algebra is the same as a Clifford

algebra - a well established and well studied object in mathematics. The adjective ’ge-

ometric’ means that we take into account its Grassmannian structure and we specify

its relation to the geometry. Although one usually means the Euclidean geometry in

the engineering literature, it turns out that it is convenient to see the geometry in a

more abstract sense here. Namely, we will use the concept of Klein geometry, where

the geometry of the space is given by its symmetries. By viewing these symmetries

as orthogonal transformations of a suitable vector space, we can represent them by

invertible elements in the corresponding Clifford algebra.

For this point of view it is crucial to understand the representations of orthogonal

transformations in Clifford algebras. The best way to demonstrate the principles of

such representations is shown in the well known examples from the lowest dimensions.

Concretely, these are the fields of complex numbers C and quaternions H, which both

can be considered as subalgebras of a Clifford algebra. The complex numbers param-

eterize 2D rotations while the quaternions parameterize 3D rotations. Let us recall

that rotations in the plane are given by multiplications by a unit complex number if

we identify R2 with the complex plane C. Namely, given (v1, v2) ∈ R2 which we see as

a complex number v1 + iv2, the coordinates of a vector rotated by an angle ϕ are given

by real and imaginary parts of the complex number

(cosϕ+ i sinϕ)(v1 + v2i). (1.1)

Moreover, the imaginary part of a product of two complex numbers encodes the scalar

product of the corresponding vectors in the plane while the real part is the area spanned

by these two vectors. The spatial rotations in 3D space can be represented by unit

quaternions in a similar way however it turns out that the left multiplication from (1.1)

must be replaced by another operation called the conjugation or the sandwich product.

Concretely, we first identify each vector v = (v1, v2, v3) ∈ R3 with a pure imaginary

quaternion

v = v1i + v2j + v3k, (1.2)

where i2 = j2 = k2 = −1 are three complex units which satisfy relations k = ij = −ji.

A rotation in 3D space by an arbitrary angle ϕ along an axis determined by the unit

vector n, which is represented by the quaternion n in the sense of (1.2), is then given

by formula

v 7→ RvR−1, (1.3)
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where R is a unit quaternion given by

R = cos
ϕ

2
+ n sin

ϕ

2
. (1.4)

The multiplicative inverse of a nonzero quaternion is given by the conjugate-to-norm

ratio which for the unit quaternion has a simple form R−1 = cos(ϕ/2) − n sin(ϕ/2).

The complex units actually represent rotations by the right angles around the coordi-

nate axes and the relations express their non-commutativity. Indeed, for example the

rotation of v by 90◦ around the x-axis is

ivi = −v1i + v2j + v3k.

Let us note that the half-angle in the formula (1.4) can be explained by the fact

that the unit quaternion R appears twice in (1.3). Consequently, the same rotation

is represented by ±R which reflects the fact that the representation of orthogonal

transformations in the Clifford algebra has a spinorial nature. The form of rotations

in the complex plane given by (1.1) is degenerate due to commutativity of complex

numbers (and rotations in the plane).

The benefits of representing rotations by quaternions are well known and this ap-

proach is used in applications a lot. The implementation of algorithms based on quater-

nions is easier, the algorithms are less time consuming compared to the usual repre-

sentation by matrices and Euler angles. Another significant benefit is the elimination

of the effect known as the gimbal lock. What is less known and used is that we can

also easily express scalar and vector products and thus the projections and reflections

of vectors via quaternions. Indeed, the real part of the quaternionic product uv of two

pure imaginary quaternions gives the scalar product (up to a sign) of the vectors rep-

resented by quaternions u, v while the imaginary part of uv encodes the vector product

of these vectors. The reflection of a vector v in a plane with the normal unit vector u

is given by a formula similar to the one for rotations, namely

v 7→ uvu. (1.5)

By Cartan-Dieudonné theorem, each rotation can be expressed as a composition of two

consecutive reflections in the planes. If u1, u2 denote the corresponding unit normal

vectors, then by (1.5) the rotation is given by v 7→ u2u1vu1u2. Combining this result

with (1.3), we get another expression for a quaternion that realizes a rotation, namely

R = u2u1. Obviously, the formula for reflection can be also used to derive a formula for

the orthogonal projection, namely v 7→ 1/2(v + uvu) gives the projection of a vector v

to the plane with normal vector u in terms of quaternionic multiplication.

The theory of geometric algebras is a framework that generalizes and unifies this

concept of using complex numbers and quaternions for representing rotations etc. A

necessary algebraic and geometric background for the formulation of such theory is

given in the preliminary Chapter 2. Here we refer mainly to [1] and also to [33, 12, 34].

For a more detailed description of Klein geometries and their ’curved’ analogues see

[2, 3]. A panorama of basic examples of geometric algebras is introduced in Chapter
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3. In particular, sections 3.1-3.3 describe geometric algebras suitable for representing

Euclidean geometry in a general dimension, which is the most appealing towards appli-

cations. A geometric algebra for conics is described in section 3.4 and the last section

3.5 is devoted to the complex geometric algebras and their applications in quantum

computing.

2 Preliminaries from algebra and geometry

For good understanding of geometric algebras it is necessary to know certain concepts

and constructions from algebra and geometry. This chapter aims to summarize the

related mathematical background. A basic knowledge of mathematics of the reader is

assumed.

2.1 Grassmann algebra

Let us recall that Grassmann algebra on a vector space V is an algebra defined by

the wedge product ∧ (also called the outer product) which is linear with respect to

multiplication by scalars, distributive with respect to vector addition, associative and

for each vector v ∈ V satisfies

v ∧ v = 0. (2.1)

Substituting u+ v for v in this equation we get u∧ v+ v ∧ u = 0 which shows that the

wedge product is anti-commutative. The property (2.1) can be easily generalized to an

outer product of k vectors by associativity. Namely, v1 ∧ · · · ∧ vk = 0 holds if and only

if the vectors v1, . . . , vk are linearly dependent. For linearly independent vectors the

elements v1∧· · ·∧vk are called k-blades. Their linear combinations form the vector space

ΛkV of Grassmann elements of grade k, so called k-vectors. Identifying 0-blades with

the scalars the linear combinations of k-blades for k ∈ Z form an associative algebra

with unity which is called the Grassmann algebra (also called the outer algebra). It is

denoted by ΛV and its general elements are called multivectors and will be denoted by

bold letters.

For practical purposes it is convenient to describe the Grassmann algebra via basis.

If we fix a basis (e1, . . . , en) of V , then a basis blade of grade r is eA = ei1∧· · ·∧eik , where

the multi-index A is a set of indices ordered in the natural way 1 ≤ i1 ≤ · · · ≤ ik ≤ n,

and we put e∅ = 1. For the outer product we have

ej ∧ eA =

{
ej ∧ ei1 ∧ · · · ∧ eik if j /∈ A
0 if j ∈ A

. (2.2)

Blades of grades 0 ≤ k ≤ n form the basis of the graded Grassmann algebra ΛRn.

Hence the dimension of ΛkRn is equal to
(
n
k

)
and the dimension of the whole Grassmann

algebra is 2n. The element of the highest grade, i.e. the element of the one-dimensional

vector space ΛnV , is called the pseudoscalar.

Geometrically, the Grassmann algebra can be viewed as an algebra of subspaces

as follows. For a basis w1, . . . , wk of a vector subspace W ⊂ V we form the outer
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product w = w1 ∧ · · · ∧ wk ⊂ ΛkV . If we choose a different basis, then we get the

same k-blade up to a scalar multiple which is equal to the determinant of the matrix

of the corresponding basis change. Thus the projective class [w] = [w1 ∧ · · · ∧ wk] is

independent of the choice of basis and the prescription W 7→ [w] defines an injective

map ι : W → P(ΛkV ), called the Plücker embedding. Hence the subspace W can be

represented uniquely by the projective class of k-blades w ∈ ΛkV in this sense.

For further constructions and applications it is useful to consider the dual vector

space V ∗, i.e. the vector space of linear forms on V , and its induced dual Grassmann

algebra. With the help of V ∗ we can define a product on Grassmann algebra ΛV that

is ”dual” to the wedge product as follows. For α ∈ V ∗ the left contraction is a linear

mapping defined on basis blades by

α · eA = α · (ei1 ∧ · · · ∧ eik) =
r∑

k=1

(−1)kα(eik)eA\{ik}, (2.3)

where eA\{ik} is the blade of grade k − 1 created by deleting eik from eA. The left

contraction by a general k-form, i.e. an element of the dual Grassmann algebra � ∈
Λ(V ∗) ∼= (ΛV )∗, is then given by (2.3) together with the recursive formula (α∧β) ·eA =

α · (β · eA) for each α, β ∈ V ∗. One can define also the right contraction in the same

way but by the recursive formula in the reversed order. Note that the contractions

lower the grades of k-vectors in contrast to the wedge product. In particular, the left

contraction of a chosen pseudoscalar I ∈ ΛnV defines the duality

ΛkV ∗ → Λn−kV, � 7→ �
∗ = � · I (2.4)

between Grassmann algebras generated by vector space V and its dual vector space

V ∗. The compatibility of the wedge product and the left contraction with duality (2.4)

can be expressed by the following formula for multivectors u, v ∈ ΛV which says that

u· is left adjoint to u∧

(u ∧ v)∗ = u · v∗. (2.5)

Note that on the right-hand side we consider the left contraction of a form v∗ by a

multivector u instead of the contraction of a multivector by a form. This is possible

since we can switch the role of V and V ∗ in the above considerations. In that case we

obtain a duality ΛkV → Λn−kV ∗ defined by v∗ = v · I∗, where I∗ is a pseudoscalar in the

dual Grassmann algebra ΛV ∗. It is easy to show by definitions that the composition

of the two duality mappings v∗∗ is equal to v up to a nonzero scalar multiple which

depends on the choice of pseudoscalars I a I∗.

2.2 Quadratic space

Quadratic space is a finite dimensional vector space V equipped with a quadratic form,

or equivalently a symmetric bilinear form. Recall that symmetric bilinear form on V is

a map B : V × V → R which is linear in both arguments and which is symmetric, i.e.
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B(u, v) = B(v, u) for all u, v ∈ V . In the case of a complex bilinear form the values

are in the field of scalars C instead of R. Symmetric bilinear form B is determined

uniquely by quadratic form QB = B(v, v) by the so called polarization identity

B(u, v) =
1

2
(QB(u+ v)−QB(u)−QB(v)) , (2.6)

so we may equivalently alter when speaking about quadratic and bilinear form. The

subspace formed by vectors v ∈ V for which B(v, w) = 0 holds for all w ∈ V is called

the kernel of B. The bilinear form B is called nondegenerate if its kernel is trivial. In

this case, and only in this case, the bilinear form defines the isomorphism

V → V ∗, v 7→ B(v, ·), (2.7)

between vector space V and its dual V ∗. According to the law of inertia each symmetric

bilinear form is diagonalizable. Concretely, in each real vector space of dimension n

endowed with a non-degenerate symmetric bilinear form B of signature (p, q) there

exists an associated orthonormal basis (e1, . . . , en) defined by

B(ei, ej) =





1 if i = j = 1, . . . , p

−1 if i = j = p+ 1, . . . , n

0 if i 6= j

where 1 ≤ i, j ≤ n = p+ q.

The couple (p, q) is called signature of the bilinear form B. The quadratic space

defined by a bilinear form of signature (p, q) will be denoted Rp,q. If one considers

also degenerate bilinear forms, then an orthonormal basis is extended by a basis of

the kernel of dimension r and by signature we mean the triple (p, q, r). Clearly, in the

complex case no signature is involved, since each basis vector ej may be multiplied by

the imaginary unit i to change the sign of its square.

Recall further that a vector v ∈ V is called isotropic if B(v, v) = 0. Anisotropic

subspace is the maximal subspace of V which does not contain any isotropic vector.

On the contrary, the subspace containing only isotropic vectors is called the isotropic

subspace. The dimension of the maximal isotropic subspace of quadratic space Rp,q is

equal to d = min(p, q). Moreover, there exist a distinguished basis of this space, so

called Witt basis formed by vectors e1, . . . , ed, f1, . . . , fd such that B(ei, fj) = δij and

B(ei, ej) = B(fi, fj) = 0. If we extend this basis of the maximal isotropic subspace by

the orthonormal basis of the complementary anisotropic subspace we get a basis of the

whole Rp,q such that in a suitable ordering the bilinear form B is given by matrix

B =




0 0 1d
0 1|p−q| 0

1d 0 0


 , (2.8)

where 1d stands for the unit d× d matrix.
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2.3 Clifford algebra

Let us consider a real quadratic space (V,B). In contrast to Grassmann algebra defined

by vector space V only, we take the bilinear form B into account from beginning

and we construct a new product on ΛV , so called geometric product, also called the

Clifford product, denoted simply by concatenation of multivectors. Similarly to the

outer product we demand the distributive law and associativity but for vectors v ∈ V
we demand

v2 = B(v, v) (2.9)

instead of (2.1). In contrast to the outer product, the geometric product is not anti-

commutative in general. Indeed, substituting u + v for v in (2.9) gives uv + vu =

2B(u, v). Clifford algebra is the maximally free algebra together with the geometric

product, i.e. the set of linear combinations of geometric products of k vectors, where

k ∈ N is arbitrary (but k ≤ n is sufficient as we shell see).

Since this definition is rather abstract for computations in applications we write also

the definition via basis. Namely, let us fix an orthonormal basis (e1, . . . , en) associated

to a nondegenerate bilinear form B of signature (p, q). The geometric product on

vectors can be written in terms of the wedge product and inner product ei·ej = B(ei, ej)

as follows

eiej = ei · ej + ei ∧ ej, 1 ≤ i, j ≤ m,

For the geometric product between blades of a general grade we obtain a similar for-

mula. Namely, the wedge product is extended according to (2.2) while the inner product

extends to the left contraction which can be viewed via isomorphism V ∗ ∼= V given by

(2.7) as a new product on Grassmann algebra. Namely, instead of (2.3) the formula

for the left contraction by a vector is given by

ej · eA = ej · (ei1 ∧ · · · ∧ eir) =
r∑

k=1

(−1)kB(j, ik)eA\{ik}.

and for the geometric product we get

ejeA = ej · eA + ej ∧ eA. (2.10)

Finally, these definitions are linearly extended to the whole of the vector space ΛRn.

Thus we get the real Clifford algebra Gp,q = Cl(Rp,q). Note that this algebra is naturally

graded; the grade zero and grade one elements are identified with R and Rn respectively.

Note also that the definition of the Clifford algebra by formula (2.10) allows the bilinear

form to be degenerate. The Clifford algebra generated by a bilinear form with a kernel

of dimension r and whose restriction to the nondegenerate part has signature (p, q) will

be denoted by Gp,q,r.

The Z-grading by grades define a Z2-grading of the Clifford algebra according to the

parity of grades. Namely, the linear map v → −v on Rn extends to an automorphism α

called the grade involution and decomposes Gp,q into positive and negative eigenspaces.
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The former is called the even subalgebra G0
p,q and the latter is called the odd part G1

p,q.

In addition to α, there are two important antiautomorphisms of real Clifford algebras.

The first one is x̃ called the reverse or transpose operation and it is defined by extension

of identity on Rn and by the anti automorphism property x̃y = ỹx̃. The second anti

automorphism is called the Clifford conjugation x̄ and the operation is defined by

composing α and the reverse

x̄ = α(x̃) = α̃(x). (2.11)

By a recursive application of equation (2.10), the geometric product of k vectors

can be expressed as a linear combination of blades of grades ≤ k, more precisely

there appear blades of grades k, k − 2, . . . . So we get a map from Clifford algebra to

Grassmann algebra which is an isomorphism of filtered vector spaces in fact, [1]. Its

inverse is called the quantum map and it allows to see the Grassmann structure inside

the Clifford algebra. In particular, the outer product and the left contraction can be

seen as the highest respectively the lowest grade part of the geometric product, i.e. for

blades u, v ∈ ΛRn of grades k, ` we have

u ∧ v = [uv]k+`, u ¸ v = [uv]`−k, (2.12)

where [ ]k denotes the projection operator Gp,q → ΛkRn. The existence of the quantum

map also shows that the Clifford algebra has dimension 2n and that the basis blades

of the Grassmann algebra form a basis of the Clifford algebra.

2.4 Orthogonal Lie group and algebra

Let us recall that orthogonal transformations of a quadratic space (V,B) are those

invertible transformations that keep the bilinear symmetric form B invariant. These

transformations form the so called orthogonal group

O(V ) = {A ∈ GL(V )| B(Au,Av) = B(u, v) for all u, v ∈ V }. (2.13)

The group structure is revealed by the well-known Cartan-Dieudonné theorem which

says that each element of O(V ) is given by a composition of simple reflections, i.e. a

composition of maps

Rv(u) = u− 2
B(u, v)

B(v, v)
v (2.14)

where u, v ∈ V and v may be assumed of the unit length, i.e. B(v, v) = 1, since this this

formula is invariant with respect to rescaling. The group of orthogonal transformations

is a Lie group, i.e. it is a smooth manifold at the same time and the group multiplication

is a smooth map. Hence the local structure of O(V ) is determined by the structure of

the corresponding Lie algebra, i.e. the structure of the tangent space of O(V ) in the

identity. By derivation of (2.13) we get the orthogonal Lie algebra

o(V ) = {A ∈ End(V )| B(Au, v) +B(u,Av) = 0 for all u, v ∈ V }, (2.15)
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where the Lie bracket is given by the commutator of linear maps. Recall that the Lie

algebra is locally diffeomorphic to the Lie group and this diffeomorphism is given by

the exponential map. This map can be defined in various ways, for example by a curve

in g(t) ∈ O(V ) which is the unique solution of the Cauchy problem

ġ = A ◦ g, g(0) = id, (2.16)

Then the exponential map exp : o(V ) → O(V ) is defined as the solution in time

t = 1, i.e. exp(A) = g(1). If we take into account also the time slot, then we write

g(t) = exp(At). By the consecutive integration of equation (2.16) we get the well-known

series for the exponential map

exp(At) =
∞∑

k=0

tk

k!
Ak. (2.17)

Let us also recall that the orthogonal group of transformations of the quadratic space

Rp,q is denoted by O(p, q) and its subgroup given by matrices with the unit deter-

minant, i.e. the linear maps preserving the orientation, is denoted by SO(p, q). The

corresponding Lie algebra for both these groups is the same and is denoted by so(p, q).

Now we show how the orthogonal group and algebra are represented in the Clifford

algebra setting. For the simple reflection of a vector u in vector v given by (2.14) we

get an nice formula in the Clifford algebra. Namely, the basic equation (2.9) implies

B(u, v) = 1
2
(uv + vu) and v−1 = v/B(v, v) and so we get

Rv(u) = u− uv2 + vuv

v2
= −vuv

v2
= −vuv−1. (2.18)

since the geometric product between a vector and a scalar coincides with the usual

scalar multiplication. The crucial observation now is that the composition of such two

reflections is given by geometric product of corresponding vectors, namely

Rv1 ◦Rv2 = (v1v2)u(v1v2)
−1.

Hence by Cartan-Dieudonné theorem each orthogonal map is represented in Clifford

algebra in this sense by a geometric product of vectors of unit norm. Concretely, each

element of O(V ) is represented as

u 7→ (−1)kgug−1, (2.19)

where g ∈ Cl(V ) is an invertible element, called versor, which is crated by the geometric

product of k unit vectors and satisfies unitary condition

gg̃ = 1, (2.20)

where g̃ is the reverse of element g, see the last paragraph of 2.3. Note that this

representation is not unique since the versors ±g represent the same orthogonal map.

In fact, the versors (2.20) form the group Pin(V ) which is a double cover of O(V ), for

more details see [].
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This representation of group O(V ) defines a representation of the corresponding

Lie algebra so(V ) in Clifford algebra. Namely, by differentiation of (2.19) for a curve

g(t) of versors representing a curve g(t) ∈ SO(V ) and by linearity of the geometric

product we get that in the Clifford algebra an anti-symmetric map A = ġ(0) ∈ so(V )

is represented by

v 7→ Av − vA, (2.21)

where A = ġ(0) ∈ Cl(V ). It is easy to show by basic properties of the geometric product

that it always has grade two, i.e. it is a so called bivector A ∈ Λ2V , see [1]. Indeed,

bivectors have the exceptional property that they are closed under the commutator with

respect to the geometric product. Hence they form a Lie algebra Λ2V and the formula

(2.21) defines an surjective homomorphism of Lie algebras Λ2V → so(V ). In the case

of a nondegenerate form B, the dimensions are the same and this homomorphism is

an isomorphism of Lie algebras

Λ2V ∼= so(V ). (2.22)

Each bivector A defines a Cauchy problem in the Clifford algebra ġ = Ag with

g(0) = 1 and so it defines a curve of versors g(t) ∈ Cl(V ) as the unique solution of

this problem. Thus we get the exponential mapping in the Clifford algebra setting

which maps the Lie algebra of bivectors to the Lie group of versors. By the recursive

integration we get a formula for the exponential map as in (2.17) but with powers

computed with respect to the geometric product, i.e.

exp(At) := g(t) =
∞∑

k=0

tk

k!
Ak. (2.23)

2.5 Klein geometry

A geometry in the sense of Klein is a smooth manifold M together with a transitive and

effective action of a Lie group G, i.e. for each two points x, y ∈M there exists a g ∈ G
such that y = gx and the subgroup of G such that ∀x ∈ M : gx = x is trivial. For a

point x ∈M the subgroup Hx = {x | gx = x} of the group G is called the stabilizer of

point x. It follows from the definition of Klein geometry that the stabilizer is a closed

and Hx = π−1(x), where π : G → M is defined by x 7→ gx. It is easy to see that π

induces a bijection G/Hx →M. Hence the Klein geometry can be defined without the

use of manifold M as follows. Klein geometry is a couple (G,H), where G is a Lie group

and H is its closed subgroup such that the left coset space G/H is connected. The

group G is called the main group of the geometry and G/H is called the homogeneous

space of the geometry or simply the Klein geometry. Manifold M ∼= G/H is called a

model of the Klein geometry.

The most well known examples of Klein geometries and the most important exam-

ples with respect to applications at the same time are the Euclidean geometry on an

Euclidean space and the conformal geometry on a sphere. Let us mention some next

examples before a more detailed description of these geometries: the spherical geom-

etry O(n + 1)/O(n), the hyperbolic geometry O(1, n)/(O(1) × O(n)), the projective
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geometry SL(n + 1)/P, where P is the stabilizer od a line in Rn+1 going through the

origin, for details see [2, 3].

In this perspective, the Euclidean space En can be viewed as Klein geometry

E(n)/O(n) instead of the usual definition by the five Euclidean axioms. The main

group G = E(n) is the group of Euclidean transformations in Rn, defined as the semi-

direct product of the orthogonal group O(n) and the vector group Rn, i.e each element

of the group is given by a composition of a rotation and a translation. The Euclidean

space can be viewed also as SE(n)/ SO(n) if one considers only the transformations

preserving orientation. In the standard presentation of Euclidean group, the Euclidean

space En is identified with the affine hyperplane M = {x1 = 1} ⊂ Rn+1 and E(n) is

identified with the group of all linear automorphims of Rn+1 preserving the hyperplane

and thus induce isometries in it. A matrix representation is given by

E(n) =
{(1 0

x A

)
: A ∈ O(n), x ∈ Rn

}
. (2.24)

The stabilizer H = O(n) of the first standard basis vector of Rn+1 is formed by matrices

of the same form but with x = 0. Thus a point x ∈ En corresponding to vector

(1, x) ∈ Rn+1 is represented by the class of matrices (2.24) with a fixed x ∈ Rn and

arbitrary A ∈ O(n), hence by a translation by vector x ∈ Rn. The local structure of

Euclidean geometry is given by the corresponding Lie algebra

se(n) =
{(0 0

x A

)
: A ∈ so(n), x ∈ Rn

}
= so(n)⊕ Rn. (2.25)

The conformal geometry is the Klein geometry SO(n+1, 1)/P, where P is a so called

parabolic subgroup and can be described as a semi-direct product of the conformal

group CO(n) and the vector group Rn. The basic model M of the conformal geometry

is the sphere Sn which we view as the unit sphere embedded in the quadratic space

Rn+1,1 with a bilinear form B of signature (n + 1, 1) by mapping x 7→ (x, 1). The

points on the sphere are then in one to one correspondence with the cone of isotropic

lines in Rn+1,1 going through the origin, hence the subgroup P is the stabilizer of an

isotropic line. It can be also described in terms of its Lie algebra p as follows. In Witt

basis (2.8) of the quadratic space Rn+1,1, the matrix representation of the main group

SO(n+ 1, 1) is given by

so(n+ 1, 1) =
{


a z 0

x A −zT
0 −xT −a


 : A ∈ so(n), z ∈ Rn∗, x ∈ Rn, a ∈ R

}
(2.26)

and the stabilizer of the isotropic line e1 is given by those matrices with x = 0, i.e. the

Lie algebra of the parabolic subgroup P is p = so(n)⊕ R⊕ Rn∗.
The Euclidean geometry can be viewed as a reduction of conformal geometry as

follows. Comparing formulas (2.25) and (2.26) we see that there exists a homomor-

phism of Lie algebras se(n) → so(n + 1, 1) such that the subalgebra so(n) maps to p.

The composition of this homomorphism with the exponential map defines an injective
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homomorphism between connected components of identity of the corresponding Lie

groups which factors to an injective map

En = SE(n)/ SO(n)→ SO(n+ 1, 1)/P = Sn, (2.27)

which transfers the Euclidean structure from En to the conformal sphere Sn ⊂ Rn+1,1.

This map is well known - it is the inverse to stereographic projection. According to

the above description (2.26) on points, which we identify with translations, the map

given by

exp




0 0 0

x 0 0

0 −xT 0


 =




1 0 0

x 1n 0
1
2
xTx −xT 1


 . (2.28)

Hence in the vector model in the Witt basis an Euclidean point given by translation

x ∈ Rn is represented by the isotropic line (1, x, 1
2
xTx).

2.6 Geometric Algebra

By a general geometric algebra (GA) we mean a Clifford algebra where we consider

also its Grassmann structure, i.e. we use both the wedge product and the geometric

product, see sections 2.1 and 2.3. The understanding of a geometry in the sense of Klein,

see section 2.5, allows to relate such an algebra to a concrete geometry. Namely, we

say that Cl(V ) is the Clifford algebra for Klein geometry (G,H) if there exists a model

manifold M ⊆ V such that the main group G acts on M transitively by orthogonal

transformations from O(V ) with a stabilizer isomorphic to H. In particular it means

that G ⊂ SO(V ) is represented by versors of Cl(V ), see section 2.4. In literature, the

relation of the geometry to GA is usually given by specifying the natural inclusion

map J : M ↪→ V which we refer to as the embedding. A list of examples of geometric

algebras and related geometries is given below in section 3.

By geometric objects in algebra Cl(V ) associated to Klein geometry G/H ∼= M we

mean submanifolds M ∩W where W is a subspace of vector space V . Since such an ob-

ject is determined by vector subspace W , it can be represented via Plücker embedding

by the projective class of a blade w ∈ Cl(V ) in the sense that for each v ∈ V we have

v ∧w = 0 if and only if v ∈ W. In particular, a subspace of dimension k is represented

by a blade of grade k. In the language of geometric algebras, the representation of

M ∩W by such a blade w is called the outer product null space (OPNS) representation.

In terms of the embedding J : M ↪→ V we have

M ∩W = {x ∈M : J(x) ∧w = 0}. (2.29)

The outer product computes joins of objects in GA in the following sense. The OPNS

representation of object M∩(W1⊕W2) determined by a direct sum of subspaces is given

by the projective class of a blade w1 ∧ w2, where w1 and w2 are OPNS representations

of W1 and W2 respectively. Moreover, these subspaces have a nonempty intersection

if and only if w1 ∧ w2 = 0. In a similar way, we can replace the outer product by the
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left contraction and we define the inner product null space (IPNS) representation w∗

of M ∩W as a blade of the dual algebra such that

M ∩W = {x ∈M : J(x) ·w∗ = 0}. (2.30)

It follows from the duality relation (2.5) that the blade w∗ ∈ ΛV ∗ representing subspace

W in this sense indeed is the dual blade to w with respect to duality (2.4), i.e. it is

given by w∗ = w · I∗, where I∗ is a pseudoscalar in the dual algebra ΛV ∗. It is easy to see

from definitions that the dual blade w∗ is the OPNS representation of the annihilator

W⊥ ⊂ V ∗, i.e. the space of linear forms that vanish on subspace W . Hence the outer

product on the dual algebra represents the direct sum of annihilators, namely w∗1 ∧ w∗2
is the OPNS representation of W⊥

1 ⊕W⊥
2 = (W1 ∩W2)

⊥ and hence its dual blade is

the IPNS representation of the intersection of subspaces W1 and W2, thus the IPNS

representation of the intersection of corresponding objects, if it is not zero. On the

other hand, it is zero if and only if W⊥
1 ∩W⊥

2 = (W1 + W2)
⊥ = ∅, which holds if and

only if W1 +W2 6= V. Hence, restricting V to the union W1∪W2 if necessary, the outer

product in the dual algebra defines so called regressive product on ΛV

w1 ∨ w2 := (w∗1 ∧ w∗2)
∗ (2.31)

which computes intersections of subspaces and hence intersection of corresponding

objects. In the case of a nondegenerate bilinear form, we may identify the vector space

V with its dual V ∗ according to (2.7) and consequently we may identify the induced

Grassmann algebra with its dual. In this identification, the annihilator W⊥ is equal

to the orthogonal complement of W and its OPNS representation is w∗ which can be

viewed as an element of the same algebra as w.

The Clifford structure of GA allows a representation of orthogonal transformations

by versors. Indeed, transformations of points in M ∼= G/H are given by group G ⊆
SO(V ) which is represented in GA by formula (2.19) by definition. The linearity of

this formula implies that it extends to blades and defines an automorphism of the

Grassmann algebra, also called outermorphism in literature, i.e. for each versor g ∈
Cl(V ) and vectors w1, w2 ∈ V we have

g(w1 ∧ w2)g−1 = gw1g−1 ∧ gw1g−1.

Hence the induced transformations of objects are represented by the same formula

as transformations of points. Namely, the reflection of object M ∩ W with OPNS

representation w in a unit vector v is given by

w 7→ −vwv (2.32)

while its SO(V ) transformation given by a spinor R, i.e. RR̃ = 1, reads

w 7→ RwR̃. (2.33)

Next maps that can be easily expressed in terms of GA operations are orthogonal

projections, i.e. linear maps with the idempotent property which are orthogonal with
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respect to bilinear form B. The classical formula w 7→ B(w, v−1)v for the projection

of a vector to the one-dimensional subspace generated by v ∈ V extends to blades

as follows. The orthogonal projection of a blade w to a subspace represented by an

invertible blade v is given by

w 7→ (w · v−1) · v. (2.34)

In computations of orthogonal projections of objects in GA this formula is usually

simplified to (w · v) · v since v2 ∈ R holds for each blade and thus v differs from its

inverse v−1 only by a scalar multiple. It means that the two blades define the same

projective class and thus represent the same object in GA if this multiple is not zero.

The formula can be generalized also to null blades, v2 = 0, by replacing the inverse by

the Clifford conjugate (2.11), see section 3.2 in [34] for more details.

3 Examples of geometric algebras and their appli-

cations

In this chapter, concrete examples of geometric algebras and their applications are

briefly described. We start with algebras related to Euclidean space and Euclidean

transformations since these have probably the highest potential towards applications

in engineering. Namely, we treat the geometric algebras generated by quadratic spaces

V = Rn,0, V = Rn,0,1 and V = Rn+1,1. However we work with a general dimension the

most interesting case n = 3 is emphasized. Then we introduce a geometric algebra

which allows for working with general conics in plane. The last example is a complex

geometric algebra which allows for a direct realization of quantum Dirac formalism.

3.1 Geometric algebra Gn

The geometric algebra Gn = Cl(Rn) is defined by the positive definite form of signature

(n, 0). This form is usually called Euclidean since it induces the standard scalar product

on Rn and the Euclidean distance. Nevertheless, it is not the geometric algebra for

the Euclidean geometry in the sense described above because the algebra of bivectors

is too ”small”. Namely, by (2.22) the algebra is isomorphic to so(n), and not to

the Euclidean Lie algebra. In other words, we cannot represent translations in this

geometric algebra. Algebra Gn is suitable for representing vector subspaces of V =

Rn and general rotations SO(n), also reflections and orthogonal projections to vector

subspaces. On the other hand, operations from Gn can used in the Euclidean space if

we fix the origin and thus identify En with Rn. So we can represent lines, planes etc.

going through the origin and rotations around origin.

Concretely, a bivector u ∧ v represents the plane through origin with direction

vectors u, v ∈ Rn in the sense of (2.29), and its exponential represents a rotation in

this plane. Indeed, the versor exp(u ∧ vt) commute with its generator u ∧ v by the

definition of exponential map (2.16), and hence this versor defines a rotation that leaves
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the plane given by vectors u, v ∈ Rn invariant. If we want a rotation by an explicit

angle we need to normalize the generating bivector in the following way.

Proposition 3.1. The rotation in plane defined by vectors u, v ∈ Rn ⊂ Gn by angle ϕ

is in geometric algebra Gn given by versor

R = exp

(
1

2
ϕ

u ∧ v√
−(u ∧ v)2

)
= cos

ϕ

2
+ sin

ϕ

2

u ∧ v√
−(u ∧ v)2

. (3.1)

Proof. Obviously, the bivector in the proposition is normed such that it squares to

-1. The equality in (3.1) then follows directly from the definition of exponential map

(2.16). To prove the rest let us choose vectors ū, v̄ defining the plane such that they

are of unit length and the angle between them is ϕ/2. Then the desired rotation can

be expressed as a composition of two reflections of the form (2.18), one in vector ū and

the second in vector v̄. Thus it is represented by versor

R = v̄ū = v̄ · ū+ v̄ ∧ ū = cos
ϕ

2
+ sin

ϕ

2

ū ∧ v̄√
−(ū ∧ v̄)2

.

The last equality follows from the fact that B(u, v) in the algebra Gn is the standard

inner product and for the square of a bivector we compute (ū∧ v̄)2 = (ū · v̄)2− ū2v̄2 =

− sin2 ϕ
2
. The normed bivector obviously does not depend on the choice of vectors u, v

in the plane u ∧ v.

Example 3.2. The lowest dimensional geometric algebra suitable for the representa-

tion of rotations in 3D space is G3. Rotations from SO(3) are represented by rotors R

in the sense of equation (2.33). The dimension n = 3 is special because the bivector

representing the plane of rotation is dual to vector that represents the rotation axis.

If the pseudoscalar satisfies I2 = −1, which is the case of the usual choice I = e1e2e3,

where e1, e2, e3 is an orthonormal basis of R3, and if n is the unit vector in the direction

of the rotation axis, then n∗ is the bivector that determines the rotation plane and that

is normed (n∗)2 = −1. Hence the rotor (3.1) for the rotation given by axis n and angle

ϕ has a simple form in G3

R = exp(
1

2
ϕn∗) = cos

ϕ

2
+ n∗ sin

ϕ

2
. (3.2)

This representation of rotations actually is identical with the representation by quater-

nions (1.4), because the subalgebra of G3 of elements of even grade is isomorphic to the

algebra of quaternions H. Indeed, in an orthonormal basis e1, e2, e3 this isomorphism

is realized by i 7→ −e2e3, j 7→ −e3e1, k 7→ −e1e2. The benefit of G3 in contrast to

quaternions is that we can also easily represent all usual vector operations. For exam-

ple, scalar product is u · v, the cross product u× v = (u ∧ v)∗, and the triple product

[uvw] = (u∧ v∧w)∗. In this sense, we may view G3 as a unification of quaternions and

vector algebra.
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Applications of Gn

The benefits of quaternions in representing rotations in 3D space are well known and

they are frequently used in various fields in computer graphics and engineering. As

pointed out in the previous example, geometric algebra G3 gives an equivalent rep-

resentation of rotations and basic vector operations in a new unified language. In

particular, the rotor is easily constructed from the knowledge of the axis of rotation

and the angle of rotation by (3.2) and a composition of rotations is just the geometric

product of the corresponding elements in G3. In general, geometric algebra Gn gives

a smart representation of rotations and reflections in orthogonal group O(n) that can

consequently help to solve or to reduce a given problem. An example of such an ap-

plication is given in our paper [31] that is enclosed in Appendix 1. Here we used this

geometric algebra representation to study a specific problem in control theory, namely

an invariant control problem on Carnot group of step two.

3.2 Projective geometric algebra

To obtain a true geometric algebra for the Euclidean geometry we need to represent

by versors not only rotations but also translations. The minimal such algebra is called

the projective geometric algebra (PGA). It is the algebra Gn,0,1 defined by a degenerate

bilinear form of signature (n, 0, 1) on V = Rn+1. In this vector space (and hence in

this algebra), the Euclidean space En can be identified with hyperplane M = {x1 =

1} ⊂ Rn+1 = V as described in 2.5, and the Euclidean transformations are given by

orthogonal transformations of Rn+1.

Indeed, quadratic space Rn,0,1 is a direct sum of anisotropic part Rn,0 and one

dimensional kernel KerB, and thus for the algebra of bivectors we compute

Λ2Rn,0,1 = Λ2Rn,0 ⊕
(
Rn,0 ∧KerB

) ∼= so(n)⊕ Rn = se(n), (3.3)

which is the Lie algebra to Euclidean Lie group. The bivectors from Λ2Rn,0 gener-

ate rotations while bivectors from Rn,0 ∧ KerB generate translations. With respect

to common conventions, it is convenient to choose −1/2x ∧ e∞, for the generator of

translation by vector x ∈ Rn, where we denote by e∞ ∈ KerB the element from the

kernel. Since this bivector squares to zero, the corresponding versor, called translator,

has the form

T = exp(−1

2
x ∧ e∞) = 1− 1

2
x ∧ e∞. (3.4)

To get a model of Euclidean geometry we need a set of algebra elements on which

these translators act simply transitively, i.e. transitively with a trivial stabilizer. In

contrast to Gn, points cannot be represented by projective classes of vectors, i,e, by

their homogeneous coordinates, since the translators act trivially on Rn,0,1, see Remark

3.4 below. Hence the points in PGA are represented in a dual way, by n-dimensional

subspaces.

Proposition 3.3. Projective classes of nonisotropic multivectors of grade n in Gn,0,1

define a model of the n-dimensional Euclidean geometry.
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Proof. Let us first describe projective classes of nonisotropic multivectors in ΛnRn,0,1 ⊂
Gn,0,1. Since space Rn,0,1 decomposes into its anisotropic part Rn,0 and kernel KerB,

we get that

ΛnRn,0,1 = ΛnRn,0 ⊕ (KerB ∧ Λn−1Rn,0).

The square of elements of one-dimensional space ΛnRn,0 ⊂ Gn,0,1 is nonzero because

the restriction of bilinear form B to Rn,0 is nondegenerate. On the other hand, each

element u ∈ KerB ∧ Λn−1Rn,0 squares to zero since it contains a vector from the

kernel. Moreover, also its product with elements of ΛnRn,0 vanishes from the same

reason. Hence the projective class of each nonisotropic multivector in ΛnRn,0,1 is of

the form [In + u], where In ∈ ΛnRn,0 denotes the pseudoscalar of the anisotropic space

Rn,0 ⊂ Rn,0,1. It is easy to verify that the translators (3.4) really act transitively on

these classes. Indeed, the infinitesimal action is

[x ∧ e∞, In + u] = −2e∞ ∧ (x ¸ In),

and we get each element of KerB ∧ Λn−1Rn,0 by a suitable choice of vector x ∈ Rn.

Moreover, the stabilizer of pseudoscalar In is given by versors generated by bivectors

Λ2Rn,0 ∼= so(n). Hence the classes [In + u] define a model of the Euclidean geometry,

see 2.5.

Remark 3.4. The Euclidean space cannot be represented in PGA by vectors since the

generators of translations act trivially on Rn,0,1 ⊂ Gn,0,1. Indeed, by the definitions of

geometric and wedge product the infinitesimal action of a bivector u∧e∞ ∈ Rn,0∧KerB

on a vector v ∈ Rn,0,1 is equal to

[u ∧ e∞, v] = B(u, v)e∞ −B(e∞, v)u−B(v, u)e∞ +B(u, e∞)v = 0.

The geometric objects in PGA are Euclidean (affine) subspaces. Indeed, the inter-

section of a linear subspace W ⊂ Rn+1 with the hyperplane M = {xn+1 = 1} that

models the Euclidean space then defines uniquely an affine subspace M ∩W in En.

Thanks to isomorphism ΛkRn+1 ∼= R(n+1)∗, see (2.4), the Euclidean points can be also

seen as elements in the dual projective space PR(n+1)∗, i.e. as projective classes of linear

forms on Rn+1. Each subspace W , and thus also M ∩W, is then uniquely represented

by an element in the dual Grassmann algebra, see section 2.1. This dual picture implies

that, in contrast to Gn, the outer product computes intersections of affine subspaces

and ∨ generates affine subspaces. Namely, if X ∈ ΛnRn,0,1 ⊂ Gn,0,1 represents a point

x ∈ En, then multivector w represents affine subspace W ∩M in the sense

X ∨w = 0 if and only if x ∈ W ∩M. (3.5)

Since the bilinear form in PGA is degenerate, the duality (2.4) cannot be understood

as an operation on Gn,0,1; there does not exist representation dual to (3.5) in PGA. The

map given by w 7→ w∗ = wI, where I is the pseudoscalar in Gn,0,1, does not determine

affine subspace but represents only the orthogonal complement to vector space W .

In addition to Euclidean (affine) subspaces and their translations, one can represent

general rotations, reflections and orthogonal projections in PGA. The most important

formulas are summarized in the following proposition.
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Proposition 3.5. (a) Geometric objects in PGA. A point x ∈ En is in Gn,0,1 repre-

sented by a projective class of multivectors

X = In + e∞ ∧ (x ¸ In), (3.6)

where In ∈ ΛnRn,0 and e∞ ∈ KerB. A Euclidean subspace of dimension k defined by

points X1, . . . ,Xk+1 is represented by

w = X1 ∨ · · · ∨Xk+1 ∈ P(Λn−kRn+1). (3.7)

and the intersection of subspaces w1,w2 is given by w1 ∧ w2.

(b) Transformations in PGA. A general rotation in point x is given by versor

Rx = TRT̃, (3.8)

where T is a versor for translation given by (3.4), T̃ is its reverse and R is a versor for

rotation given by (3.1). A reflection of Euclidean subspace w in hyperplane represented

by vector π ∈ Rn+1 is

w 7→ πwπ, (3.9)

and the orthogonal projection of Euclidean subspace w to subspace v is given by

w 7→ (w · v) ∧ v. (3.10)

Proof. (a) In the Klein sense, a point of the Euclidean space is identified with the the

translation to this point. Hence the mutivector (3.6) representing point x ∈ En is

obtained by acting by translator (3.4) to pseudoscalar In that represents the origin in

our model

X = TInT̃ = In + e∞ ∧ (x ¸ In).

The representation of Euclidean subspaces (3.7) and their intersections follows directly

from (3.5) and from the general description of geometric objects in section 2.6.

(b) The description of PGA bivectors in (3.3) implies that rotations are generated by

elements of Λ2Rn,0, and thus the rotors have the same form in PGA as in Gn, viz (3.1).

Indeed, the rotation of point X given by formula (3.6) is given by

RXR̃ = In + e∞ ∧ (RxR̃ ¸ In) = XRxR̃,

which is the rotated point by (3.1). The equality follows from the fact that the action

of versors keep the products in geometric algebra invariant and that vector e∞ is

perpendicular to Rn,0. However R still represents only rotations in the origin, a general

rotation in point x can be expressed as a composition of translation T̃ from the point

x to origin, rotation R in origin and the translation T back to the point x. Since

compositions of maps is represented by geometric products of corresponding versors,

we get equation (3.8) for a general rotation.
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In a similar way, by translating the situation to origin and by using the dual repre-

sentation in Gn, the equations for reflections and orthogonal projections can be derived.

Concretely, a translator T̃ that translates an affine hyperplane π ∈ Rn,0,1 to origin sat-

isfies T̃πT = π′, where π′ ∈ Rn,0. The reflection in π′ is represented by Rπ′ in Gn, see

(2.18), and thus the reflection in π is given by

w 7→ TRπ′(T̃wT)T̃ = Tπ′T̃wTπ′T̃ = πwπ.

The orthogonal projection of w to v is given by the intersection of Euclidean subspace

v with subspace which contains w and orthogonal to v. Hence to prove equation (3.10)

we only need to show that w ·v represents the latter Euclidean subspace. To do that we

decompose the blades as w = w′+w∞, v = v′+v∞ into blades that does not contain and

contain the vector form kernel, respectively. The parts v′,w′ represent the associated

vector spaces to the corresponding affine spaces while v∞,w∞ represents their distance

from origin. Any contraction by these elements is always zero and the decomposition

is invariant under translations. Hence we get

w · v = v ¸ w = T(v′ ¸ w′)T̃,

where translator T̃ shifts w to origin, i.e. T̃wT = w′ holds. Indeed, v′ ¸ w′ is the dual

representation in Gn of vector space that contains w′ and is perpendicular to v′.

Example 3.6. Let us treat PGA for the 3D Euclidean space in more detail. The

algebra is induced by R4 with a degenerate quadratic form B of signature (3, 0, 1).

Let e1, e2, e3 be an orthonormal frame with respect to B of the nondegenerate part

R3,0 ⊂ R3,0,1 and let e∞ be a vector from the kernel of B. If we denote eij = ei ∧ ej
for simplicity, then by (3.6) an Euclidean point with coordinates (x, y, z) in this basis

is represented by the projective class of multivector

X = e123 + xe∞23 − ye∞13 + ze∞12. (3.11)

The point can be also given by the intersection of three planes p1 ∧ p2 ∧ p3 or by the

intersection of a plane and a line p ∧ `. A plane given by ax + by + cz + d = 0 is

represented by the projective class of vector

p = ae1 + be2 + ce3 + de∞ (3.12)

and can be also given by a line and a point `∨X. A line is represented by the projective

class of multivector of degree two whose coefficients are the Plücker coordinates

` = p1e23 + p2e31 + p3e12 + d1e1∞ + d2e2∞ + d3e3∞, (3.13)

where (p1, p2, p3) is the unit directional vector of the line and (d1, d2, d3) is its distance

from the origin. The line can be also defined by two points X1∨X2 or by the intersection

of two planes p1 ∧ p2.
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General rotations (3.8) in 3D can be easily expressed by the rotation axis. Namely,

if ` is a normalized representation of the axis in the sense that `2 = −1, i.e. ` is of the

form as in (3.13), then the rotation by angle ϕ is given by versor

R` = exp(
1

2
ϕ`) = cos

ϕ

2
+ ` sin

ϕ

2
. (3.14)

By proposition 3.5 we can easily express also the reflection in a plane and an orthogonal

projection to a plane. A basic example of computation in 3D PGA is displayed in Figure

1. The figure is a screenshot from the visualization created by ganja.js – Geometric

Algebra code generator for javascript, [7].

Figure 1: The reflection of line ` in plane p is represented by the projective class of

p`p. The blade ` · p represents the plane that contains line ` and is perpendicular to

plane p, hence blade (` · p) ∧ p represents the orthogonal projection of line ` to plane

p. Similarly, X · p is the perpendicular from X to plane p and thus (X · p) ∧ p is the

orthogonal projection of point p to this plane.

Applications of PGA

As PGA is a ”dual” to the classical homogeneous representation, it is an ideal repre-

sentation of Euclidean space and Euclidean transformations. In particular, it allows

a quaternion like representation of general rotations. Obviously, for applications the

3D case from the previous example is the most used. Promising applications appear

mainly in computer graphics since the language of geometric algebra is intuitive and

universal while minimal data are used. A significant research group in this field is the

group in Belgium and Netherlands; their work includes [4, 7, 8]. There are indications

that PGA could replace quaternions in all 3D engines in near future. However PGA is

a minimal representation of Euclidean geometry, the degeneracy of generating bilinear
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form can cause problems, mainly in implementations. This problem can be solved by

viewing PGA as an subalgebra in a bigger, non degenerate algebra as shown in our

paper [29], enclosed in Appendix 2.

3.3 Conformal geometric algebra

If we want to define a geometric algebra for Euclidean geometry with a nondegenerate

bilinear form, then it is necessary to add a vector e0 that is the Witt counterpart to the

null vector e∞ from PGA. Then we have two null vectors e2∞ = e20 = 0 but the kernel

of B is nontrivial since B(e0, e∞) = −1. Since the isotropic space has an indefinite

signature (1, 1), we get a nondegenerate bilinear form on V = Rn+2 with signature

(n + 1, 1) by this construction. The corresponding geometric algebra Gn+1,1 is called

the conformal geometric algebra (CGA).

According to (2.22), we have Λ2Rn+1,1 ∼= so(n + 1, 1) for the algebra of bivectors

in CGA. Under this isomorphism, the action of bivectors on Rn+1,1 given by equation

(2.21) corresponds to the standard matrix representation of Lie algebra described in

2.5. This action is transitive on the projectivization of the cone of null vectors and

its stabilizator is the parabolic subalgebra p described by equation (2.26). Indeed, the

bivectors that act trivially on the null vector e0 are exactly those that do not contain

this vector and the bivector e0 ∧ e∞, i.e.

p = so(n)⊕ Rn∗ ⊕ R ∼= {u ∧ v, u ∧ e∞, e0 ∧ e∞}, (3.15)

where u, v ∈ Rn,0. Hence the action of versors on the projectivized null vectors in Gn+1,1

models the conformal geometry, see section 2.5. The model of Euclidean geometry is

then obtained by defining M to be the set of all but one projective classes of null

vectors. Indeed, if we denote by [e∞] the missing class and if we set en+1 = e∞, then

the inverse stereographic projection (2.27) defines a bijective mapping En → M . The

vector e∞ is the Witt counterpart to null vector e0 that represents the origin and it

can be viewed as representing the infinity.

The intersection of vector subspace W ⊂ Rn+1,1 of dimension k + 2 with the null

cone is a cone in W , hence the null lines on this cone can be identified with a sphere

again, this time a sphere of dimension k. If this cone contains the line e∞, i.e. the

source of the projection, then W represents affine subspace of dimension k in En.

Hence the geometric objects in CGA representable in the sense of (2.29) are exactly

the generalized spheres, i.e. spheres and affine spaces which we see as spheres containing

the infinity. In particular, a point is not natural objects and it should be considered

as a limit sphere with zero radius, or as so called flat point X ∧ e∞, which is a sphere

of dimension zero going through the infinity.

Thanks to the nondegeneracy of the bilinear form the duality (2.3) defines an unary

operation in CGA, and so we have two mutually dual representations for generalized

spheres available in CGA. The outer representation (2.29) is suitable for construc-

tion of spheres from points or from spheres of lower dimension while from the inner

representation (2.30) of the sphere we can easily read off its radius and its center.
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Similarly as in PGA, there exist versors for translations and rotations in CGA.

Moreover, we have an additional versor for scaling. Next to reflections in hyperplanes

and orthogonal projections to affine spaces we can similarly represent also reflections

in spheres and orthogonal projections on spheres. The main results are summarized

in the following proposition which is left without proof. The proof follows easily from

facts in the text above and is analogous to the proof of proposition 3.5.

Proposition 3.7. (a) Geometric objects in CGA. A point x ∈ En is represented in

Gn+1,1 by the projective class of vector

X = e0 + x+
1

2
x2e∞, (3.16)

where e0, e∞ is a Witt pair of null vectors. In particular, for normalized representations

of points X2 = Y2 = 1 we have

X ·Y = −1

2
‖x− y‖2, (3.17)

where ‖x− y‖ is the Euclidean norm in Rn. An affine space of dimension k defined by

points X1, . . . ,Xk+1 is represented by blade

w = X1 ∧ · · · ∧Xk+1 ∧ e∞ (3.18)

and its dual representation w∗ coincides with its representation in PGA. A sphere of

dimension k defined by points X1, . . . ,Xk+2 is represented by blade

s = X1 ∧ · · · ∧Xk+2 (3.19)

and the intersection of spheres s1, s2 is given by s1 ∨ s2. If s is a sphere of the maximal

dimension n− 1, then its dual representation is given by vector

s∗ = S +
1

2
ρ2e∞, (3.20)

where S is the normalized representation of the sphere center and ρ is its radius.

(b) Transformations in CGA. Rotations and translations are represented by the same

versors as in PGA. The scaling by factor r2 is given by versor

S =
r2 + 1

2r
+
r2 − 1

2r
e0 ∧ e∞ (3.21)

The reflection of generalized sphere s in a hyperplane π ∈ Λn+1Rn+1,1 is given by

formula s 7→ πsπ, similarly as for reflections in PGA. If π represents a sphere of

maximal dimension, then this formula defines a spherical inversion. The orthogonal

projection of affine space w to a generalized sphere s is w 7→ (w · s) · s.
Example 3.8. Let us describe the 3D case in more detail again. According to (3.16),

a point of Euclidean space E3 given in Cartesian coordinate system with unit direction

vectors e1, e3, e3 ∈ R3 by vector (x, y, z) is represented in CGA by vector

X = e0 + xe1 + ye2 + ze3 +
1

2
(x2 + y2 + z2)e∞. (3.22)

21



The representation of a plane given by three points is p = X1 ∧X2 ∧X3 ∧ e∞ and its

dual representation p∗ coincides with its representation in PGA, see equation (3.12).

Similarly, a line is given by ` = X1 ∧ X2 ∧ e∞ and its dual coincides with (3.13). A

sphere generated by four points in CGA is represented by s = X1 ∧X2 ∧X3 ∧X4 and

its dual representation is s∗ = S + 1
2
ρ2e∞. A circle can be expressed either by three

generating points c = X1 ∧X2 ∧X3 or in the dual way by c∗ = (S + 1
2
ρ2e∞) ∧ π∗, i.e.

as the intersection of a sphere and the plane where the circle lies.

A rotation in E3 by axis ` is given by the same rotor as in PGA, see (3.14).

Also reflections in planes and orthogonal projections to planes or lines have the same

representations as in PGA. Moreover, in CGA we can represent in the analogous way

spherical inversions and orthogonal projections to spheres. A concrete example of such

a computation in CGA is shown in Figure 2. Again, the figure is a screenshot from

a visualization created in ganja.js – Geometric Algebra code generator for java script,

[7].

Figure 2: Given two spheres s, t, a circle c, a line ` and a point X, the intersection

of the spheres is the circle s ∨ t and the intersection of the line with sphere t is the

pointpair ` ∨ t. The orthogonal projection of the line to sphere s is the circle (` · s) · s
and the orthogonal projection of point X to sphere s is the point pair (X · s) · s, where

X is understood as the flat point X ∧ e∞. The element (c · t) · t gives the circle that

lies on sphere t and, in the same time, that lies on the sphere which contains circle c

and is perpendicular to sphere t.
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Applications of CGA

CGA is the minimal nondegenerate geometric algebra that allows representing Eu-

clidean geometry. We still have the smart quaternionic like representation of rotations

and, moreover, we can represent scaling and spheres in CGA. The latter is advanta-

geous especially in robotics - one can model both prismatic and revolute joints but

there are also numerous other applications. One of the most active research groups in

applications of CGA in robotics and computer vision is the group in Cambridge, see

e.g. [9, 10, 11]. Our contribution to this topic is [15, 16, 17, 18, 19, 20, 22, 26] and

[21, 23, 25, 27]. The paper [21] is enclosed in Appendix 3; there we show an application

of CGA to a specific problem in binocular vision.

3.4 Geometric algebra for conics

Recall that two-dimensional CGA is geometric algebra G3,1 where an Euclidean point is

given by (3.16). Hence the objects representable by vectors in G3,1 are linear combina-

tions of 1, x, y, x2+y2, i.e. circles, lines, point pairs and points. If we want to cover also

general conics, we need to add two terms: 1
2
(x2−y2) and xy. It turns out that we need

two new infinities for that and also their two corresponding counterparts (Witt pairs),

[33]. Thus the resulting dimension of the space generating the appropriate geometric

algebra is eight.

Let R5,3 denote the eight–dimensional real coordinate space R8 equipped with a

non–degenerate symmetric bilinear form of signature (5, 3). The form defines Clifford

algebra G5,3 and this is the Geometric Algebra for Conics in the algebraic sense. To

describe an embedding of the Euclidean plane into R5,3, let us choose a basis such that

the corresponding bilinear form is

B =




0 0 −13×3
0 12×2 0

−13×3 0 0


 , (3.23)

where 12×2 and 13×3 denote unit matrices of the displayed size. Analogously to CGA

and to the notation in [34], we denote the corresponding basis elements as follows

n̄+, n̄−, n̄×, e1, e2, n+, n−, n×.

The form of (3.23) suggests that the basis elements e1, e2 will play the usual role of

standard basis of the plane while the null vectors n̄, n will represent either the origin or

the infinity. Note that there are three orthogonal ‘origins’ n̄ and three corresponding

orthogonal ‘infinities’ n. In terms of this basis, a point of the plane x ∈ R2 defined by

x = xe1 + ye2 is embedded using the operator J : R2 → C ⊂ R5,3, which is defined by

J(x, y) = n̄+ + xe1 + ye2 +
1

2
(x2 + y2)n+ +

1

2
(x2 − y2)n− + xyn×. (3.24)

Note that n̄×, n̄− are missing and thus the image lies in a six–dimensional subspace of

R5,3. Let us remark that the image is the analog of the conformal cone from CGA. It is a
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two–dimensional real projective variety determined by three homogeneous polynomials

of degree two lying in the six–dimensional subspace. Geometric Algebra for Conics

(GAC) is the Clifford algebra G5,3 together with the embedding R2 → R5,3 given by

(3.24) in the basis determined by matrix (3.23).

The GAC objects which are represented by vectors in the inner product representa-

tion are exactly conic sections. Indeed, it is an easy observation that the components of

the vector (3.24) representing the embedded Euclidean point form the complete basis

of polynomials of degree two and this is exactly the ideal of polynomials defining conic

sections as algebraic varieties. Hence each conic has a unique IPNS representation (in

the homogeneous sense) given by a vector in basis dual to basis present in (3.24), i.e.

each conic in GAC is represented by a vector of the form

QI = v̄+n̄+ + v̄−n̄− + v̄×n̄× + v1e1 + v2e2 + v+n+. (3.25)

The OPNS representation of a conic section is a multivector of degree five and it can

be easily computed as the outer product of five GAC points that lie on the conic, i.e.

QO = P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5, (3.26)

where P1, . . . , P5 are GAC representatives of the points. The duality between IPNS

representation and OPNS representation reads

QO = (QI ∧ n− ∧ n×)∗,

QI = (QO ∧ n̄− ∧ n̄×)∗,

where the star denotes the usual duality given by the multiplication by the inverse of

pseudoscalar. Let us remark that the IPNS representation of intersections of conics,

i.e. point quadruplets in general, are represented by the outer product of the two IPNS

representations of conics. While the OPNS representation of a conic is easily obtained

from the generating points, one can easily read off the internal parameters of the conic

from its IPNS representation. For more details see sections 3 and 4 in [24].

Since the GAC embedding (3.24) is the same as CGA embedding up to the last two

terms, the scalar product of two embedded points is proportional to the square of their

Euclidean distance, see (3.17). In particular, each point is represented by a null vector

and GAC is still a conformal model of Euclidean geometry, i.e. the transformations

represented by a versor in GAC are conformal transformations. The GAC generators

for rotations, translations in the x–direction, translations in the y–direction and for

the scaling respectively are given by

r = 1
2
e1 ∧ e2 + n̄× ∧ n− + n× ∧ n̄−,

t1 = −1
2
e1 ∧ n+ − 1

2
e1 ∧ n− − 1

2
e2 ∧ n×,

t2 = −1
2
e2 ∧ n+ + 1

2
e2 ∧ n− − 1

2
e1 ∧ n×,

s = 1
2
(n̄+ ∧ n+ + n̄− ∧ n− + n̄× ∧ n×).

For more details on transformations in GAC see [24] and [28].
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Example 3.9. Let us consider five points [−1, 1], [1, 1], [2, 2], [−1, 2], [0, 3] and their

respective GAC representatives P1, . . . , P5 given by (3.24). These points span a conic

with IPNS representation

QI = (P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5 ∧ n̄− ∧ n̄×)∗ = −15n̄+ + 3n̄− + 6n̄× + 6e1 − 33e2 − 18n+

The IPNS representation is directly related to the conic matrix




6 −3 3

−3 9 −33
2

3 −33
2

18




and thus one can see that it is an ellipse and one can easily derive all its internal

parameters. Let us further consider a circle of radius 1 with center in point [0, 2]. Its

IPNS representation in GAC reads the same as the representation in algebra CGA,

namely

CI = n̄+ + 2e2 +
3

2
n+.

The intersection of circle C and ellipse E is a point quadruplet with IPNS representation

EI ∧ CI . This quadruplet contains two real points [−1, 2], [0, 3] and two ’infinities’.

Indeed, it is easy to see that J(−1, 2) ∧ (EI ∧ CI)∗ = 0 and J(0, 3) ∧ (EI ∧ CI)∗ = 0.

Applications of GAC

GAC is a geometric algebra made by enlarging 2D CGA such that the geometric objects

are not only circles but general conic sections. However the concept of orthogonality is

lost by this construction, we can span conics, compute their intersections and conformal

transformations similarly as in CGA. The algebra and its abilities are described in detail

in our paper [18] that is enclosed in Appendix 4. In [28], we applied GAC to get a new

geometric conic fitting algorithm. Other applications can be found in [13, 14].

3.5 Complex geometric algebras

When allowing for complex coefficients in the construction of Clifford algebra in 2.3, the

same generators eA produce by the same formulas the complex Clifford algebra which

we denote by Cm = Cl(m,C). Clearly, in the complex case no signature is involved,

since each basis vector ej may be multiplied by the imaginary unit i to change the

sign of its square. Hence we may assume we start with the real Clifford algebra Gm

with the inner product eiej = δij, 1 ≤ i, j ≤ m, and we construct the complex Clifford

algebra as its complexification Cm := Gm ⊕ iGm, i.e. any element ϕ ∈ Cm can be

written as ϕ = x+ iy, where x, y ∈ Gm. The complex Clifford algebras for small m are

well known; C0 are complex numbers itself, C1 is the algebra of bicomplex numbers

and C2 is the algebra of biquaternions.
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The construction via the complexification of Gm leads to the definition an important

anti automorphism of Cm, so-called Hermitian conjugation

ϕ† = (x+ iy)† = x̄− iȳ, (3.27)

where the bar notation stands for the Clifford conjugation in Gm. Note that on the

zero grade part of the complex Clifford algebra C0 = C it coincides with the usual

complex conjugation. The elements satisfying ϕ† = ϕ and ϕ† = −ϕ will be called

Hermitian and anti-Hermitian respectively. Hermitian conjugation is a very important

anti-involution which is the Clifford analogue of the conjugate transpose in matrices.

It leads to the definition of the Hermitian inner product on Cm given by

〈ϕ|ψ〉 = [ϕ†ψ]0, ϕ, ψ ∈ Cm (3.28)

where we recall that [ ]0 denotes the projection to the scalar part, i.e. the grade zero

part. Indeed, it is easy to see that it is linear in the second slot and conjugate linear

in the first slot; for each z ∈ C and ϕ ∈ Cm we have (zϕ)† = ϕ†z† = z̄ϕ† since

the Hermitian conjugation is anti-automorphism. The Hermitian symmetry of (3.28)

follows from the involutivity of the Hermitian conjugation while its positive definiteness

follows from the fact that

〈ϕ|ϕ〉 = [ϕ†ϕ]0 =
∑

A

ϕ2
A,

where A is an arbitrary multi index and ϕA is the coefficient at the Grassmann blade

eA, i.e. ϕ =
∑

A ϕAeA.

Let us assume a complex Clifford algebra generated by a vector space of an even

dimension, i.e. m = 2n. Then there exists a special basis formed by null vectors, so

called Witt basis, see 2.2. Namely, we define

fj =
1

2
(ej − iej+n), j = 1, . . . , n

f †j =
1

2
(ej + iej+n), j = 1, . . . , n,

where e1, . . . , e2n is the usual orthonormal basis. The Witt pairs (fj, f
†
j ) form a basis

and the vectors are isotropic with respect to the geometric product, i.e. for each

j = 1, . . . , n they satisfy f 2
j = 0 and f †j

2 = 0. They also satisfy the Grassmann

identities

fjfk + fkfj = f †j f
†
k + f †kf

†
j = 0, j, k = 1, . . . , n (3.29)

and the duality identities

fjf
†
k + f †kfj = δjk, j, k = 1, . . . , n (3.30)

The Witt basis of the whole complex Clifford algebra C2n is then obtained, similarly

to the basis of the real Clifford algebra, by taking the 22n possible geometric products

of Witt basis vectors, i.e. it is formed by elements

(f1)
i1(f †1)j1 · · · (fn)in(f †n)jn , ik, jk ∈ {0, 1} for k = 1, . . . , n (3.31)
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In terms of the Witt basis it is easy to describe directly a realization of a spinor

space in C2n. In the language of Clifford algebras, spinor space is defined as a minimal

left ideal of the complex Clifford algebra and is realized explicitly by means of a self-

adjoint primitive idempotent. We start by defining

Ij = fjf
†
j and Kj = f †j fj, j = 1, . . . , n.

Direct computations show that both Ij, Kj are mutually commuting self–adjoint idem-

potents. Moreover, the duality relations (3.30) between Witt basis vectors imply

that Ij + Kj = 1 for each j = 1, . . . , n. Hence we get the resolution of the identity

1 =
∏n

j=1(Ij +Kj). Consequently we get

C2n = C2n

n∏

j=1

(Ij +Kj) = C2nI1 · · · In ⊕ C2nI1 · · · In−1K1 ⊕ · · · ⊕ C2nK1 · · ·Kn,

a direct sum decomposition of the complex Clifford algebra into 2n isomorphic re-

alizations of the spinor space that are denoted according to the specific idempotent

involved:

S{i1···is}{k1···kt} = C2nIi1 · · · IisKk1 · · ·Kkt ⊂ C2n, (3.32)

where s+t = n and the indices are pairwise different. Each such space has dimension 2n

and its basis is obtained by right multiplication of the basis of C2n by the corresponding

primitive idempotent Ii1 · · · IisKk1 · · ·Kkt . By the basic properties of the Witt basis

elements (3.29) and (3.30) it is easy to see that this action is nonzero if and only if

the element of C2n actually lies in the Grassmann algebra generated by n-dimensional

space (f †i1 , . . . , f
†
is
, fk1 , . . . , fkt), i.e. we may write

S{i1···is}{k1···kt} = Λ(f †i1 , . . . , f
†
is
, fk1 , . . . , fkt)Ii1 · · · IisKk1 · · ·Kkt . (3.33)

It is an easy observation that each such spinor space S has the structure of a Hilbert

space of dimension 2n due to the Hermitian product (3.28) and that the multiplication

in C2n makes it into a left C2n-module.

Proposition 3.10. Each spinor space S ⊂ C2n is a Hilbert space of dimension 2n

with Hermitian product defined by (3.28). The unitary group U(2n) is represented by

elements λ ∈ C2n such that

λ†λ = 1 (3.34)

Proof. The corresponding unitary group is represented on spinor space S by elements of

the complex Clifford algebra that keep the Hermitian product invariant. For a λ ∈ C2n

and two spinors ϕ, ψ ∈ S we compute 〈λϕ|λψ〉 = [ϕ†λ†λψ]0 by definition and due to

the antiautomorphism property of the Hermitian conjugation. Hence 〈λϕ|λψ〉 = 〈ϕ|ψ〉
if λ satisfies (3.34).

The unitary elements of C2n also satisfy λλ† = 1 and form an analogy of unitary ma-

trices. Let us remark that this representation comes from the spin representation of the

corresponding complex orthogonal group which is well known form the representation

theory.
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Applications of complex Clifford algebras

According to Proposition 3.10, states of a n-level quantum system and their evolution

can be both described in complex Clifford algebra C2n. It means that we have a

realization of the abstract Dirac formalism in a concrete Clifford algebra which is

more straightforward in many aspects than the usual realization in matrix algebra. A

detailed description of this concept in the theory of quantum computing is given in our

paper [32] that is enclosed in Appendix 5.
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[27] Hrdina, J., Návrat, A., Vaš́ık, P.: GAC Application to Corner Detection Based on

Eccentricity, Lecture Notes in Computer Science (2019)
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České Budějovice, Czech Republic

Correspondence
Jaroslav Hrdina, Institute of Mathematics,
Faculty of Mechanical Engineering, Brno
University of Technology, Technická
2896/2, 616 69 Brno, Czech Republic.
Email: hrdina@fme.vutbr.cz

Communicated by: W. Sprößig

Funding information
Grantová Agentura České Republiky,
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1 INTRODUCTION

Geometric control theory uses geometric methods to control various mechanical systems.1,2 We use the methods of
sub-Riemannian geometry and Hamiltonian concept.3,4 As a reasonable starting point, we consider mechanisms moving
in the plane, typically wheeled mechanisms like cars (with or without trailers) or robotic snakes.5,6 The movement of a
planar mechanisms is always invariant with respect to the action of the Euclidean group SE(2). As the prototypes of planar
mechanisms, we choose those consisting of the body in the shape of a triangle and three legs connected to the vertices of
the body by joints of various types and combinations, see the Figure 1. Although such mechanisms have almost the same
shape, the configuration spaces may differ. In particular, possible motions of the mechanism induce a specific filtration
in the configuration space. We present two examples that carry the filtration (3, 6) and (4, 7), respectively.6,7

To control the mechanisms locally, we consider the nilpotent approximations of the original control systems.8 Although
the configuration spaces and their approximations have the same filtration, the approximations form Carnot groups that
are generally endowed with more symmetries.9 One gets the symmetries generated by the right-invariant vector fields,
and there may be additional symmetries acting nontrivially on the distribution. Our Carnot groups of filtrations (3, 6) and
(4, 7) carry subgroups of the symmetries isomorphic to SO(3).7,10 This observation leads to the idea of the local control in
geometric algebra approach.

We reformulate the control problems in the concept of geometric algebras G3 and G4.11–13 We use the natural
SO(3)-invariant operations in geometric algebras to reduce the set of geodesics to a simpler set of curves in the geometric
algebra.14 Namely, each geodesic is a linear combination of orthogonal vectors, and SO(3) acts on the geodesics by means of

Math Meth Appl Sci. 2022;1–17. wileyonlinelibrary.com/journal/mma © 2022 John Wiley & Sons, Ltd. 1

34



2 HRDINA ET AL.

the action on the appropriate orthonormal system of vectors. So it is sufficient to study geodesics for one fixed orthonormal
basis, that is, we can study just geodesics in the moduli space over the action of SO(3).

We present the local control algorithm for finding geodesics passing through the origin and an arbitrary point in its
neighborhood. The algorithm is based on the use of rotors in order to relate two orthogonal bases. We provide an efficient
method to such comparison using geometric algebras. We illustrate our algorithm on two specific examples.

2 NILPOTENT CONTROL PROBLEMS

We focus on two control problems such that their symmetry groups contain SO(3) as their subgroups. The first system
has the growth vector (3, 6), and the other one has the growth vector (4, 7).7,9

2.1 Control problems on Carnot groups of step 2
By nilpotent control problems, we mean the invariant control problems on Carnot groups and we consider the Carnot
groups G of step 2 with the filtration (m,n).3,15,16. If we denote the local coordinates by (x, z) ∈ Rm ⊕Rn−m, we can model
the corresponding Lie algebra 𝔤 of vector fields

Xi = 𝜕xi −
1
2

n−m∑
l=1

m∑
𝑗=1

cl
i𝑗x𝑗𝜕zl 𝑗 = 1, … ,m

Xm+𝑗 = 𝜕z𝑗 𝑗 = 1, … ,m − n,

(1)

where ck
𝑗l are the structure constants of the Lie algebra 𝔤 and the symbol 𝜕 stands for partial derivative. We discuss the

related optimal control problem
.q(t) = u1X1 + … + umXm (2)

for t > 0 and q in G and the control u = (u1(t), … ,um(t)) ∈ Rm with the boundary condition q(0) = q1, q(T) = q2 for
fixed points q1, q2 ∈ G, where we minimize the cost functional 1

2
∫ T

0 (u2
1 + … + u2

m)dt. The solutions q(t) then correspond
to the sub-Riemannian geodesics, that is, admissible curves parametrized by a constant speed whose sufficiently small
arcs are the length minimizers.

We use the Hamiltonian approach to this control problem.3 There are no strict abnormal extremals for the step 2 Carnot
groups, so we focus on the normal geodesics and address them just as geodesics. The left-invariant vector fields Xi, i =
1, … ,m form a basis of TG and determine the left-invariant coordinates on G. We define the corresponding left-invariant
coordinates hi, i = 1, … ,m and wi, i = 1, … ,n−m on the fibers of T∗G by hi(𝜆) = 𝜆(Xi) and wi(𝜆) = 𝜆(Xm+i), for arbitrary
1-forms 𝜆 on G. Thus, we use (xi,wi) as the global coordinates on T∗G.

The geodesics are exactly the projections of normal Pontryagin extremals, that is, the integral curves of the left-invariant
normal Hamiltonian

H = 1
2
(h2

1 + h2
2 + … + h2

m), (3)

FIGURE 1 Generalized trident snakes
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HRDINA ET AL. 3

on G. Assume that 𝜆(t) = (xi(t), zi(t), hi(t),wi(t)) in T∗G is a normal extremal. Then the controls u𝑗 to system (2) satisfy
u𝑗(t) = h𝑗(𝜆(t)) and the base system takes the form of

.xi = hi, i = 1, … ,m

.z𝑗 = −1
2

m∑
i=1

c𝑗ikhixk, 𝑗 = 1, … ,n − m
(4)

for q = (xi, zi). Using u𝑗(t) = h𝑗(𝜆(t)) and the equation
.
𝜆(t) = H⃗(𝜆(t)) for the normal extremals, we write the fiber

system as
.
hi = −

m−n∑
l=1

m∑
𝑗=1

cl
i𝑗h𝑗wl, i = 1, … ,m,

.w𝑗 = 0, 𝑗 = 1, … ,n − m,

(5)

where cl
i𝑗 are the structure constants of the Lie algebra 𝔤 for the basis Xi. The solutions wi, i = 1, … ,n − m are constants

that we denote by

w1 = K1, … ,wn−m = Kn−m. (6)

If K1 = … = Kn−m = 0, then h(t) = h(0) is a constant and the geodesic (xi(t), zi(t)) is a line in G such that zi(t) = 0.
If at least one of Ki is nonzero, the first part of the fiber system (5) forms a homogeneous system of ODEs

.
h = −Ωh with

constant coefficients for h = (h1, … , hm)T and the system matrix Ω. Its solution is given by h(t) = e−tΩh(0), where h(0) is
the initial value of the vector h at the origin.

2.2 Left-invariant control problem with the growth vector (3, 6)
Let us consider three vector fields on R6 with the local coordinates (x1, x2, x3, z1, z2, z3) in the form

X1 = 𝜕x1 +
x3

2
𝜕z2 −

x2

2
𝜕z3 ,

X2 = 𝜕x2 +
x1

2
𝜕z3 −

x3

2
𝜕z1 ,

X3 = 𝜕x3 +
x2

2
𝜕z1 −

x1

2
𝜕z2 .

(7)

The only nontrivial Lie brackets are

X4 = [X1,X2] = 𝜕z3 , X5 = [X1,X3] = −𝜕z2 , X6 = [X2,X3] = 𝜕z1 . (8)

These six vector fields determine a step 2 nilpotent Lie algebra 𝔪 with the multiplication table given by Table 1.
There is a Carnot group M such that the fields Xi, i = 1 … , 6 are left-invariant for the corresponding group structure.

When identified with R6 = R3 ⊕ R3, the group structure on M reads as

(x, z) · (x′, z′) =
(

x + x′, z + z′ + 1
2

x × x′
)

(9)

TABLE 1 Lie algebra 𝔪

𝖒 X1 X2 X3 X4 X5 X6

X1 0 X4 X5 0 0 0
X2 −X4 0 X6 0 0 0
X3 −X5 −X6 0 0 0 0
X4 0 0 0 0 0 0
X5 0 0 0 0 0 0
X6 0 0 0 0 0 0
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4 HRDINA ET AL.

for x = (x1, x2, x3) and z = (z1, z2, z3), where × stands for the vector product on R3. In particular,  = ⟨X1,X2,X3⟩ forms
a three-dimensional left-invariant distribution on M. We define the left-invariant sub-Riemannian metric gM on  by
declaring X1,X2,X3 orthonormal.

The geodesics of the control problem are the solutions to control systems (4),(5), with (m,n) = (3, 6), and one can
read the structure constants in Table 1. Hence, the fiber system is given by w1 = K1,w2 = K2,w3 = K3 for the constants
K1,K2,K3 and

.
h = −Ωh for h = (h1, h2, h3)T and

Ω =

( 0 K1 K2
−K1 0 K3
−K2 −K3 0

)
. (10)

Its solution is given by the exponential h(t) = e−tΩh(0), where h(0) is the initial value of the vector h at the origin. We
write an explicit formula for the general solution in terms of eigenvectors of (10). If at least one of the constants Ki is
nonzero, the kernel of Ω, that is, zero-eigenspace, is one-dimensional, generated by the vector (K3,K2,K1)T . Its orthogonal
complement corresponds to the sum of eigenspaces to the eigenvalues ±iK, where K ∶=

√
K2

1 + K2
2 + K2

3 and is generated
by the vectors (−K1K3,−K1K2,K2

2 + K2
3 )±i(K2,−K3, 0). Thus, solution to the fiber system can be written as follows:

h(t) = (C1 cos(Kt) − C2 sin(Kt))v1 + (C1 sin(Kt) + C2 cos(Kt))v2 + C3v3, (11)

where v1, v2, v3 is the eigenspace-adapted real orthonormal basis

v1 = 1

K
√

K2
2 + K2

3

( −K1K3
K1K2

K2
2 + K2

3

)
, v2 = 1√

K2
2 + K2

3

(−K2
−K3

0

)
, v3 = 1

K

( K3
−K2
K1

)

and C1,C2,C3 are the constants that satisfy the level set condition H = 1∕2, that is, ||h(t)|| = 1 that reads C2
1 +C2

2 +C2
3 = 1.

Let us note that the choice C1 = C2 = 0 leads to the constant solutions that are irrelevant as the control functions. Thus,
we assume that at least one of the constants C1,C2 is nonzero.

Let us emphasize that the base system (4) can be written in terms of a vector product as follows:

.x = h,

.z = 1
2

x × h
(12)

for vectors x = (x1, x2, x3)T and z = (z1, z2, z3)T . One obtains the general solution by substituting (11) for h and by con-
sequent direct integration. We are interested in the solutions passing through the origin, that is, we impose the initial
condition

xi(0) = 0, zi(0) = 0, i = 1, 2, 3. (13)

However, it may be difficult to find the integration constants giving the geodesics through a fixed target point.

2.3 Left-invariant control problem with the growth vector (4, 7)
Let us consider four vector fields on R7 with the local coordinates (x,𝓁1,𝓁2,𝓁3, 𝑦1, 𝑦2, 𝑦3) in the form

Y0 = 𝜕x −
𝓁1

2
𝜕𝑦1 −

𝓁2

2
𝜕𝑦2 −

𝓁3

2
𝜕𝑦3 ,

Y1 = 𝜕𝓁1 +
x
2
𝜕𝑦1 , Y2 = 𝜕𝓁2 +

x
2
𝜕𝑦2 , Y3 = 𝜕𝓁3 +

x
2
𝜕𝑦3 .

(14)

The only nontrivial Lie brackets are as follows:

Y4 = [Y0,Y1] = 𝜕𝑦1 , Y5 = [Y0,Y2] = 𝜕𝑦2 , Y6 = [Y0,Y3] = 𝜕𝑦3
. (15)
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TABLE 2 Lie algebra 𝔫

𝖓 Y0 Y1 Y2 Y3 Y4 Y5 Y6

Y0 0 Y4 Y5 Y6 0 0 0
Y1 −Y4 0 0 0 0 0 0
Y2 −Y5 0 0 0 0 0 0
Y3 −Y6 0 0 0 0 0 0
Y4 0 0 0 0 0 0 0
Y5 0 0 0 0 0 0 0
Y6 0 0 0 0 0 0 0

These seven fields determine a step 2 nilpotent Lie algebra 𝔫 with the multiplication table given by Table 2.
There is a Carnot group N such that the fields Yi, i = 1, … , 7 are left-invariant for the corresponding group structure.

The group structure on N, when identified with R7 = R ⊕ R3 ⊕ R3, yields

(x,𝓁, 𝑦) · (x′,𝓁′, 𝑦′) =
(

x + x′,𝓁 + 𝓁′, 𝑦 + 𝑦′ + 1
2
𝓁 × 𝓁′

)
(16)

for 𝓁 = (𝓁1,𝓁2,𝓁3) and 𝑦 = (𝑦1, 𝑦2, 𝑦3). In particular,  = ⟨Y0,Y1,Y2,Y3⟩ forms a four-dimensional left-invariant
distribution on N. Moreover, there is a natural decomposition

 = ⟨Y0⟩⊕ ⟨Y1,Y2,Y3⟩ (17)

into a one-dimensional distribution and a three-dimensional involutive distribution, both left-invariant. We define the
left-invariant sub-Riemannian metric gN on  by declaring Y0, Y1, Y2, Y3 orthonormal.

The geodesics of the control problem are solutions to the control systems (4),(5), with (m,n) = (4, 7), and we read the
structure constants in Table 2. Hence, the first part of the fiber system (5) is given by w1 = K1,w2 = K2,w3 = K3, where
K1,K2,K3 are constants. The second part of the fiber system takes the form

.
h = −Ωh, where h ∶= (h0, h1, h2, h3)T and

Ω =
⎛⎜⎜⎜⎝

0 K1 K2 K3
−K1 0 0 0
−K2 0 0 0
−K3 0 0 0

⎞⎟⎟⎟⎠ . (18)

Its solution is given by h(t) = e−tΩh(0), where h(0) is the initial value of the vector h at the origin, and we write its
explicit form in terms of the eigenvectors of (18). If K1 = K2 = K3 = 0, then h(t) = h(0) is a constant and the geodesic
(x(t),𝓁i(t), 𝑦i(t)) is a line in N such that 𝑦i = 0. If at least one of the constants Ki is nonzero, the kernel of Ω, that is,
zero-eigenspace, is two-dimensional and is generated by the vectors (0,−K3, 0,K1)T and (0,−K2,K1, 0)T . Its orthogonal
complement corresponds to the sum of the eigenspaces to the eigenvalues ±iK, where K ∶=

√
K2

1 + K2
2 + K2

3 and is
generated by the eigenvectors (0,K1,K2,K3)T±i(K, 0, 0, 0)T . Thus, the solution to the vertical system for nonzero K takes
the form

h0 = K(C2 cos(Kt) − C1 sin(Kt))

h̄ = K(C2 sin(Kt) + C1 cos(Kt))r1 + Cr2
(19)

where h̄ = (h1, h2, h3)T and r1, r2 are eigenspace-adapted real orthonormal vectors

r1 = 1
K

( K1
K2
K3

)
, r2 = 1

C

(
C3

(−K3
0

K1

)
+ C4

(−K2
K1
0

))

with the constants C1,C2,C3,C4 and the normalization factor C =
√

(C3K3 + C4K2)2 + K2
1 (C

2
3 + C2

4). The level set condi-
tion ||h(t)|| = 1 reads C2

1 + C2
2 + C2

3 = 1. Let us note that the choice C1 = C2 = 0 leads to the constant solutions that are
irrelevant as the control functions. Thus, we assume that at least one of the constants C1,C2 is nonzero.
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6 HRDINA ET AL.

The base system (4) takes the explicit form of

.x = h0,
.
𝓁 = h̄,
.
𝑦 = 1

2
(xh̄ − h0𝓁).

(20)

We are interested in the solutions passing through the origin; that is, we impose the initial condition

x(0) = 0,𝓁i(0) = 0, 𝑦i(0) = 0, i = 1, 2, 3. (21)

By substitution of (19), system (20) can be directly integrated. Again, it may be difficult to find the geodesics through a
fixed target point. In Section 4, we show how the symmetries of the system and the geometric algebra approach are used
for finding a geodesic towards a given point.

2.4 Symmetries of the control systems
Symmetries of the control system in question coincide with the symmetries of the corresponding left–invariant
sub–Riemannian structure (M,, gM) and (N, , gN), respectively. These are precisely the automorphisms on groups
preserving the distributions and sub–Riemannian metrics. The group SO(3) acts on R3 and preserves the vector product
which implies the following statement.

Proposition 1. For each R ∈ SO(3), the map

(x, z) → (Rx,Rz) (22)

maps the geodesics of the system from Section 2.2 starting at the origin to the geodesics starting at the origin. For each
R ∈ SO(3), the map

(x,𝓁, 𝑦) → (x,R𝓁,R𝑦) (23)

maps the geodesics of the system from Section 2.3 starting at the origin to the geodesics starting at the origin.

Proof. Follows from the invariance of (12) and (20) with respect to the action of R ∈ SO(3).

3 GEOMETRIC ALGEBRA

The construction of the universal real geometric algebra is well-known.11–13,17 We provide only a brief description in
a special case Gm that we use later. In general, geometric algebras are based on symmetric bilinear forms of arbitrary
signature. Here, we deal with the real vector space Rm endowed with a positive definite symmetric bilinear form B only.

3.1 Geometric product
Let us consider a positive definite symmetric bilinear form B on Rm and the associated orthonormal basis (e1, … , em) ,
that is,

B(ei, e𝑗) =

{
1 if i = 𝑗

0 if i ≠ 𝑗
where 1 ≤ i, 𝑗 ≤ m.

The Grassmann algebra Λ(Rm) is an associative algebra with the anti-symmetric outer product ∧ defined by the rule

ei ∧ e𝑗 + e𝑗 ∧ ei = 0 for 1 ≤ i, 𝑗 ≤ m.
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The Grassmann blade of grade r is eA = ei1 ∧ … ∧ eir , where the multi-index A is a set of indices ordered in the natural
way 1 ≤ i1 ≤ … ≤ ir ≤ m, and we put e∅ = 1. Blades of grades 0 ≤ r ≤ m form the basis of the Grassmann algebra Λ(Rm)
and for the outer product we have

e𝑗 ∧ eA =

{
e𝑗 ∧ ei1 ∧ · · · ∧ eir if 𝑗 ∉ A,
0 if 𝑗 ∈ A

and 1 ∧ eA = eA. For the vectors from Rm, the inner product ei · e𝑗 = B(ei, e𝑗) and the outer product ei ∧ e𝑗 lead to the
so-called geometric product

eie𝑗 = ei · e𝑗 + ei ∧ e𝑗 , 1 ≤ i, 𝑗 ≤ m.

The definitions of inner and geometric products then extend to blades of the grade r as follows. For the inner product we
put 1 · eA = 0 and

e𝑗 · eA = e𝑗 · (ei1 ∧ · · · ∧ eir ) =
r∑

k=1
(−1)kB(e𝑗 , eik )eA∖{ik},

where eA∖{ik} is the blade of grade r − 1 created by deleting eik from eA. This product is also called the left contraction in
literature. For the geometric product, we define

e𝑗eA = e𝑗 · eA + e𝑗 ∧ eA.

These definitions extend linearly to the whole vector space Λ(Rm). Thus, we get an associative algebra over this vector
space, the so-called real geometric algebra, denoted by Gm. Note that this algebra is naturally graded; the grade zero and
grade one elements are identified with R and Rm, respectively. Finally, we can define the norm of a blade as the magnitude
of the blade |eA| = √

eA · ẽA. Note that eA · ẽA, where eA ≠ 0 is always positive in Gm.

3.2 Objects
The vectors in Rm with the coordinates (x1, … , xm) are given by x = x1e1 + · · · + xmem, and the square with respect to the
geometric product x2 = x2

1 + · · · + x2
m ∈ R coincides with the square of the Euclidean norm of x. A vector x represents

a one-dimensional subspace (line) p in Rm given by the scalar multiples of x which in Gm is expressed by the formula
u ∈ p ⇐⇒ u ∧ x = 0. In the same way, a plane 𝜋 generated by two vectors x and 𝑦 is represented by x ∧ 𝑦 in the sense
u ∈ 𝜋 ⇐⇒ u∧x∧𝑦 = 0. In general, any r-dimensional subspace Vr ⊆ Rm is represented by a blade Ar of grade r such that

Vr = NO(Ar) = {x ∈ Rm ∶ x ∧ Ar = 0}. (24)

Such a representation is called the outer product null space (OPNS) representation in the literature. In particular, the
whole space Rm is represented by a blade of maximal grade, so-called pseudoscalar. Similarly, one defines the inner
product null space (IPNS) representation A∗

m−r of Vr as a blade of grade m − r such that x ∈ Vr ⇐⇒ x · A∗
m−r = 0. The

OPNS and IPNS representations are mutually dual with respect to the duality on Gm defined by the multiplication by
pseudoscalar, namely,

A∗ = AI,

where A is a blade and I is the pseudoscalar. Indeed, one can show that (x ∧ A)I = x · (AI) for each vector x ∈ Rm, in
particular

x ∧ A = 0 ⇐⇒ x · A∗ = 0.

Remark 1. OPNS representations of objects in G3 are summarized in Table 3. For example, the plane generated by
the vectors u, v has the OPNS representation u ∧ v. Its IPNS representation (u ∧ v)∗ is a vector perpendicular to the
plane. More specifically, for the pseudoscalar I = e1∧e2∧e3 = e1e2e3, we receive the usual vector product in geometric
algebra form as

u × v = −(u ∧ v)I. (25)
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TABLE 3 Blades of geometric algebra G3

Grade Name Blades Dimension Objects
0 Scalars 1 1 Numbers
1 Vectors e1, e2, e3 3 Lines
2 Bivectors e1 ∧ e2, e1 ∧ e3, e2 ∧ e3 3 Planes
3 Pseudoscalars e1 ∧ e2 ∧ e3 1 Volume forms

3.3 Transformations
Let us fix a vector n ∈ ∧1Rm ⊂ Gm such that n ·n = n2 = 1 and x ∈ ∧1Rm ⊂ Gm arbitrary. The negative conjugation −nxn
defines the reflection with respect to the hyperplane orthogonal to n, because

−nx⟂n = −(n ∧ x⟂)n = (x⟂ ∧ n)n = x⟂nn = x⟂,

−nx||n = −x||,
where x = x|| + x⟂ is the orthogonal decomposition of x with respect to n. Conjugation preserves the grades of blades and
is an outermorphism n(u1 ∧ · · · ∧ul)n = (nu1n) ∧ · · · ∧ (nuln) for any vectors u1, … ,ul; thus, minus the conjugation is the
(anti)outermorphism depending on the dimension m. Since each rotation is a composition of two reflections, a rotation
in Gm is represented by the conjugation with respect to the geometric product of two vectors. To find a rotor between
vectors x and 𝑦, we have a nice formula at hand.

Lemma 1. Let x and 𝑦 be the unit vectors in Gm, that is, x, 𝑦 ∈ ∧1Gm, then the formula

Rx𝑦 = 1̂ + 𝑦x, (26)

where the hat symbol stands for the normalization û = u∕
√

u · u, defines the rotation in the plane x ∧ 𝑦 which maps
vector x to 𝑦 and acts trivially on (x ∧ 𝑦)∗.

Proof. Multiplication of two vectors x, 𝑦 ∈ ∧1Rm ⊂ Gm, such that x2 = 𝑦2 = 1, defines a multivector

𝑦x = cos(𝜃) + sin(𝜃)𝑦 ∧ x,

where 𝜃 is the angle between x and 𝑦, Lemma 4.212. The conjugation by such multivector 𝑦x represents the rotation
in the plane x ∧ 𝑦 with respect to angle 2𝜃 in the positive way. Using standard trigonometric formulas, we can see by
straightforward calculation that

Rx𝑦 = 1̂ + 𝑦x = 1 + cos(𝜃) + 𝑦 ∧ x sin(𝜃)√
(1 + cos(𝜃))2 + sin2(𝜃)

= 1 + cos(𝜃) + 𝑦 ∧ x sin(𝜃)√
2 + 2 cos(𝜃)

=
√

1 + cos(𝜃)
2

+ 𝑦 ∧ x

√
1 − cos2(𝜃)

2(1 + cos(𝜃))
=
√

1 + cos(𝜃)
2

+ 𝑦 ∧ x
√

1 − cos(𝜃)
2

= cos
(
𝜃

2

)
+ (𝑦 ∧ x) sin

(
𝜃

2

)
.

So Rx𝑦 is the rotation in the plane x̂ ∧ 𝑦 in the positive way about the angle between x and 𝑦 so the vector x goes to the
vector 𝑦.

Finally, (x ∧ 𝑦)∗ is orthogonal to x and 𝑦 and the straightforward computation x𝑦(x ∧ 𝑦)∗𝑦x = x𝑦𝑦x(x ∧ 𝑦)∗ = (x ∧ 𝑦)∗
proves the rest of the statement.

Remark 2. One can see that 𝑦x𝑦 is an axial symmetry with respect to 𝑦, and thus, x+𝑦x𝑦 = 2 cos(𝜃)𝑦. We can compute
the square of the norm

(1 + 𝑦x)(1 + x𝑦) = 1 + x𝑦 + 𝑦x + 1 = 2 + 2 cos(𝜃)
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and with the help of the geometric product, we compute

(1 + 𝑦x)x(1 + x𝑦) = (x + 𝑦)(1 + x𝑦) = (x + 2𝑦 + 𝑦x𝑦) = (2 + 2 cos(𝜃))𝑦

so the conjugation by (26) maps x to 𝑦.

3.4 Rotor construction
Let (x1, … , xm) and (𝑦1, … , 𝑦m) be a pair of bases of Rm such that

1. xi · x𝑗 = 𝑦i · 𝑦𝑗 for all i, 𝑗 = 1, … ,m, that is, all the scalar products are equal, and
2. x1 ∧ · · · ∧ xm = 𝑦1 ∧ · · · ∧ 𝑦m, that is, the pseudoscalars are equal.

Let us remind that a complete flag {V} in an increasing sequence of subspaces of the vector space Rm

{0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm = Rm,

such that dim(Vi) = i. We use the complete flags to find the explicit rotation R such that RxiR̃ = 𝑦i for all i = 1, … m. Our
method can be summarized as follows:

• We consider the complete flags {V} and {W} by setting Vi = ⟨x1, … , xi⟩ = NO(x1 ∧ · · · ∧ xi) and Wi = ⟨𝑦1, … , 𝑦i⟩ =
NO(𝑦1 ∧ · · · ∧ 𝑦i), respectively.

• We map the complete flag {V} to the complete flag {W} inductively in m steps. In the 𝑗th step, we assume Vi = Wi for
i > 𝑗 and we find the rotation Ri such that RiViR̃i = Wi for i > 𝑗 − 1.

Before we formulate the construction in detail, we need several technical lemmas.

Lemma 2. Let (x1, … , xm) and (𝑦1, … , 𝑦m) be a pair of bases such that

1. xi · x𝑗 = 𝑦i · 𝑦𝑗 for all i, 𝑗 = 1, … ,m, and
2. x1 ∧ · · · ∧ xi = 𝑦1 ∧ … ∧ 𝑦i for all i = 1, … ,m.

If {V} and {W} are the corresponding complete flags, respectively, and if Vi = Wi for all i = 1, … ,m, then xi = 𝑦i for
all i = 1, … ,m.

Proof. The equality x1 = 𝑦1 holds trivially from the assumptions. Then x2 · x2 = 𝑦2 · 𝑦2 reads that x2, 𝑦2 are of the same
length, x2 · x1 = 𝑦2 · 𝑦1 reads that the angles between x1, x2 and 𝑦1, 𝑦2 are identical and x1 ∧ x2 = 𝑦1 ∧ 𝑦2 reads that they
have the same orientation. Then V2 = W2 and x1 = 𝑦1 imply x2 = 𝑦2 and so on for all the basis vectors.

Lemma 3. Let (x1, … , xi, z) and (𝑦1, … , 𝑦i, z) be a pair of sets of independent vectors such that x1 ∧ · · · ∧ xi ∧ z =
𝑦1 ∧ · · · ∧ 𝑦i ∧ z. If NO(x1 ∧ · · · ∧ xi) = NO(x1 ∧ · · · ∧ xi) then x1 ∧ · · · ∧ xi = 𝑦1 ∧ · · · ∧ 𝑦i.

Proof. The independence of the sets of vectors implies x1 ∧ · · · ∧ xi ∧ z ≠ 0, 𝑦1 ∧ · · · ∧ 𝑦i ∧ z ≠ 0. If NO(x1 ∧ · · · ∧ xi) =
NO(𝑦1 ∧ · · · ∧ 𝑦i), then x1 ∧ · · · ∧ xi = 𝛽x1 ∧ · · · ∧ xi for 𝛽 ∈ R.

Then

x1 ∧ · · · ∧ xi ∧ z = 𝑦1 ∧ · · · ∧ 𝑦i ∧ z,

(x1 ∧ · · · ∧ xi − 𝑦1 ∧ · · · ∧ 𝑦i) ∧ z = 0,

(1 − 𝛽)x1 ∧ · · · ∧ xi ∧ z = 0.

Finally 𝛽 = 1 and x1 ∧ · · · ∧ xi = 𝑦1 ∧ · · · ∧ 𝑦i.
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Lemma 4. Consider two complete flags {V} and {W} in Rm and i ≤ m such that V𝑗 = W𝑗 for 𝑗 > i. The rotor Ri between
the hyperplanes Vi ⊕ V⟂

i+1 and Wi ⊕ W⟂
i+1 constructed by the formula (26) maps Vi to Wi.

Proof. The property Vi ⊂ Vi+1 implies that V⟂
i+1 ⊂ V⟂

i and thus Vi ⊕V⟂
i+1 is a hyperplane equipped with an orthogonal

decomposition. Recall that Vi+1 = Wi+1, and thus, V⟂
i+1 = W⟂

i+1. Any rotation preserves an orthogonal decomposition,
and thus, Ri acts as the identity on V⟂

i+1 = W⟂
i+1 , so it maps Vi to Wi.

We use all these lemmas to provide a constructive proof of the following theorem.

Theorem 3.5. Let (x1, … , xm) and (𝑦1, … , 𝑦m) be a pair of bases of Rm such that

1. xi · x𝑗 = 𝑦i · 𝑦𝑗 for all i, 𝑗 = 1, … ,m, and
2. x1 ∧ · · · ∧ xm = 𝑦1 ∧ · · · ∧ 𝑦m.

Then we can construct a rotor R such that RxiR̃ = 𝑦i for all 𝑗, i = 1, … m.

Proof. Let {V} and {W} be a pair of the corresponding complete flags Vi = NO(x1∧ … ∧xi) and Wi = NO(𝑦1∧· · ·∧𝑦i).
We construct a rotor R = R1 … Rm mapping the complete flag {V} to the complete flag {W} so that Vi = Wi for all
i = 1, … m. The result on bases xi, 𝑦i then follows by Lemmas 2 and 3.

We define Rm as the identity and proceed inductively. It follows from Lemma 1 that there is a rotation Rm−1 between
the hyperplanes Vm−1 ⊕ V⟂

m ≅ Vm−1 and Wm−1 ⊕ W⟂
m ≅ Wm−1 which maps the complete flag {V} to the complete flag

{RVR̃} in such a way that Wm−1 = RVm−1R̃, where R = Rm−1Rm.
As the induction step, we consider the rotor R = R𝑗 · · ·Rm such that RViR̃ = Wi for all indices i ≥ 𝑗. According to

Lemma 4, the rotation R𝑗−1 between the hyperplanes (RV𝑗−1R̃) ⊕ (RV𝑗R̃)⟂ and W𝑗−1 ⊕ W⟂
𝑗 maps the complete flag

{RVR̃} to the complete flag {R𝑗RVR̃R̃𝑗} in such a way that Wi = R𝑗RViR̃R̃𝑗 for all i ≥ 𝑗 − 1.
After m steps, the rotor R = R1 … Rm maps the complete flag {V} to the complete flag {W} in such a way that

Vi = Wi for all i = 1, … ,m and so RxiR̃ = 𝑦i for all 𝑗, i = 1, … ,m because of Lemma 2.

The explicit construction in the proof of Theorem 3.5 gives us the following algorithm.

4 NILPOTENT CONTROL PROBLEMS IN GA APPROACH

We use the symmetries of SO(3) to define an equivalence relation on the set of geodesics passing through the origin;
see Proposition 1. We find a convenient representative of any equivalence class and describe the moduli space in the
language of GA.
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4.1 Geodesics of (3, 6)
Since the vector product x × h coincides with minus the dual of wedge product x ∧ h according to (25), the horizontal
system (12) can be written in the form

.x = h,

.z = −1
2

x ∧ h,
(27)

where x ∈ ∧1R3 represents a line and z ∈ ∧2R3 represents a plane in R3. In this way, we see the geodesics as curves in
the geometric algebra G3.

Proposition 2. Each arc-length parameterized sub-Riemannian geodesic satisfying the initial condition xi(0) =
0, zi(0) = 0, i = 1, 2, 3 is equivalent to a curve in M ≅ ∧1R3 ⊕ ∧2R3 ⊂ G3 and up to the action of a suitable R ∈ SO(3), it
takes the form

q(t) = x(t) + z(t) = D
K
(1 − cos(Kt))e1 +

D
K

sin(Kt)e2 + C3te3 −
D2

2K2 (Kt − sin(Kt))e1 ∧ e2

− C3D
2K2 (Kt − 2 sin(Kt) + Kt cos(Kt))e3 ∧ e1 +

C3D
2K2 (2 − Kt sin(Kt) − 2 cos(Kt))e2 ∧ e3,

(28)

where K > 0 and D,C3 satisfy the level set equation D2 + C2
3 = 1.

Proof. The solution to the vertical system (11) can be rewritten as

h(t) = D sin(Kt)v̄1 + D cos(Kt)v̄2 + C3v3, (29)

where we denote D =
√

C2
1 + C2

2 and the orthonormal vectors v̄1, v̄2 are obtained by the rotation of orthonormal
vectors v1, v2 as

v̄1 = 1√
C2

1 + C2
2

(−C1v1 + C2v2), v̄2 = 1√
C2

1 + C2
2

(C2v1 + C1v2).

Thus, the vectors v̄1, v̄2, v3 are orthonormal with respect to the Euclidean metric on R3. So, there is an orthogonal
matrix R ∈ SO(3) that aligns vectors v̄1, v̄2, v3 with the standard basis of R3. Thus, we get

v̄1 = Re1, v̄2 = Re2, v3 = Re3,

where e1, e2, and e3 are the elements of the standard Euclidean basis of R3. According to (22), the rotor R defines a
representative of a geodesic class (RTx(t),RTz(t)) which is a solution to (27) for h(t) = D sin(Kt)e1 +D cos(Kt)e2 +C3e3.
The solution (28) then follows by a direct integration when the initial condition is applied. Equation for the level set
follows from the definition of D.

The action of SO(3) on M ≅ R6 given by Equation (22) defines a moduli space M∕SO(3). We see M as a subset of G3
and the group SO(3) is represented by rotors instead of matrices, which act on M by conjugation. The action preserves
the vector and bivector parts, inner product, norm, and dualization with respect to ∗. We can see the elements of M as
the pairs consisting of lines and planes. The natural invariants are the norms of lines' directional vectors, norms of the
planes' normal vectors and angles between these pairs of vectors. Square norm of the normal vector of the plane z∗ · z∗ is
−z · z. Scalar product between the directional vector of the line x and the normal vector of the plane z can be rewritten as
(x ∧ z)∗ because (x · z∗)∗ = x ∧ z and x · z∗ = (x ∧ z)∗. Altogether, we consider three invariants

• the square norm of the vector x, that is, x · x,
• the square norm of the bivector z, that is, z · z,
• the element (x ∧ z)∗ ,

where · coincides with the inner product on G3. In particular, these invariants form a coordinate system on the moduli
space M∕SO(3).
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Proposition 3. Each geodesic starting at the origin defines a curve in the moduli space M∕SO(3), which is determined
by the invariants in the following way

x · x = − 2D2

K2 (cos(Kt) − 1) + C2
3t2,

z · z = − D2

4K4 ((4C2
3K2 − 4C2

3 − D2) cos (Kt)2 + 2KC2
3(2t(K − 1) sin(Kt) + t2K − 4) cos(Kt)

− 2Kt(4C2
3 + D2) sin(Kt) + t2(2C2

3 + D2)K2 + D2 + 8C32),

(x ∧ z)∗ = D2C3

2K3 ((−2K + 2) cos (Kt)2 + (2K + 2) cos(Kt) + K2t2 + Kt sin(Kt) − 4).

(30)

Proof. Follows directly from (28).

4.2 Geodesics of (4, 7)
The base system (20) can be seen as a system in geometric algebra G4

.x +
.
𝓁 = h0 + h̄,
.
𝑦 = −x ∧ h̄ − 𝓁 ∧ h0,

(31)

where we assume that x and h0 are collinear with e1 and 𝓁, h̄ in the subspace generated by e2, e3, e4. The form of the second
equation implies that 𝑦 is given by minus the wedge product of e1 and a vector from this subspace. Hence, the solution
𝑦(t) can be viewed as a curve of planes in G4.

Proposition 4. Each arc-length parameterized sub-Riemannian geodesic satisfying the initial condition x(0) =
0,𝓁i(0) = 0, 𝑦i(0) = 0, i = 1, 2, 3 is equivalent to a curve in N ≅ ∧1R4 ⊕ ∧2R4 ⊂ G4 and up to the action of suitable
R ∈ SO(3), it takes the form

q(t) = x(t) + 𝓁(t) + 𝑦(t) = (C1 cos(Kt) + C2 sin(Kt) − C1)e1 + (C1 sin(Kt) − C2 cos(Kt) + C2)e2 + Cte3

+ 1
2
(C2

1 + C2
2)(tK − sin(Kt))e1 ∧ e2 +

C
2K

((2C1 − C2Kt) sin(Kt) − (C1Kt + 2C2) cos(Kt) + 2C2 − tC1K)e1 ∧ e3,

(32)
where K > 0 and the constants C1,C2,C satisfy the level condition K2(C2

1 + C2
2) + C2 = 1.

Proof. According to the vertical system (19), the vector h̄(t) lies in the subspace generated by the vectors r1, r2 for any
t. Since the vectors r1 and r2 are orthonormal, there is an orthogonal matrix R ∈ SO(3) that aligns these vectors with
the second and third vectors of the standard basis of R3, that is,

r1 = Re2, r2 = Re3.

Due to the symmetry of this system, see (23) this rotor defines a representative of the geodesic class (x(t),RT𝓁(t),RT𝑦(t))
which is the solution to the horizontal system (20) for

h0 = K(C2 cos(Kt) − C1 sin(Kt)),

h̄(t) = K(C2 sin(Kt) + C1 cos(Kt))e1 + Ce2,

or, equivalently, a curve in R4 ⊕ Λ2R4 ∈ G4 given by the solution of (31). By direct integration of this equation and
by imposing the initial conditions, we get the formula (32) for the solution.

The action of SO(3) on N ≅ R7 given by (23) defines a moduli space N∕SO(3). We see N as a subset of G4, and the group
SO(3) is represented by rotors instead of matrices, which act on N by the conjugation. The action preserves the vector
and bivector part, the split x + 𝓁, inner product, norm, and dualization with respect to ∗. The orbits of this action are
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determined by natural invariants. For the same reason as in the case of (3, 6) and due to the invariant split, we have three
invariants as follows:

• the value of the coordinate x,
• the square of the norm of the vector 𝓁, that is, 𝓁 · 𝓁,
• the square of the norm of the bivector 𝑦, that is, 𝑦 · 𝑦.

We need one more invariant for the dimensional reasons, but the element (𝓁 ∧ 𝑦)∗ is not scalar but vector. On the other
hand, (𝓁 · 𝑦) is a multiple of the vector e1, so the value of (𝓁 · 𝑦)e1 is a scalar. As the last invariant, we consider

• the value of (𝓁 · 𝑦)e1.

These form the coordinate system on the moduli space N∕SO(3).

Proposition 5. Each geodesic starting at the origin defines a curve in the moduli space N∕SO(3), which is determined
by the invariants in the following way

x = C1(cos Kt − 1) + C2 sin Kt,

𝓁 · 𝓁 = (C1 sin Kt + C2(1 − cos Kt))2 + (Ct)2,

(𝓁 · 𝑦)e1 = 1
2

(
(C2

1 + C2
2) (C1 sin Kt + C2(1 − cos Kt)) (Kt − cos Kt) + C2

K
t (C1(2 sin Kt − Kt cos Kt − Kt)

+ C2(2 − 2 cos Kt − Kt sin Kt))
)
,

𝑦 · 𝑦 = 1
4

(
(C2

1 + C2
2)

2(Kt − cos Kt)2 + C2

K2 (C1(2 sin Kt − Kt cos Kt − Kt) + C2(2 − 2 cos Kt − Kt sin Kt))2
)
.

(33)

Proof. Follows directly from (32).

5 EXAMPLES

In the sequel, we present two examples of controls based on the symmetries in geometric algebra approach. We have the
following scheme based on Algorithm.

1. For the target point qt compute the invariants of the chosen particular control system (2).
2. Solve the system of non-linear Equations (30) or (33) in the moduli space.
3. Find the family of curves (28) or (32) going from the origin to the same point qo that belongs to the same SO(3) orbit

of qt.
4. Find R ∈ SO(3), such that R(qo) = qt.
5. Apply R on the set of curves (28) or (32) to get a family of curves going from the origin to the target point qt.

The explicit calculations were acquired using a CAS system Maple similarly to the paper.18

5.1 Example in (3, 6)
Our goal is to find the geodesic going from the origin to the target point

qt = (xt, zt) = 2e1 − e2 + 3e3 + e1 ∧ e2 − 2e1 ∧ e3 − 2e2 ∧ e3

using the invariants (30) in the target point. We have

x · x = 14, z · z = −9, (x ∧ z)∗ = 3,

and together with the level set condition, we get the system with the invariants at qt. We solve the system numerically in
Maple and present the solution with rounding up to four decimal digits
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C3 = 0.7252,D = 0.6885,K = 0.9886, (34)

t = 5.0236, (35)

Using constant (34), we get the geodesic in the moduli space from the origin to the point qo in the form

q = (x, z) = (0.6965(1 − cos(0.9886t)))e1 + 0.6965 sin(0.9886t)e2 + 0.7252te3

− (0.2425(0.9886t − sin(0.9886t)))e1 ∧ e2 + (0.2555(0.9886t − 2 sin(0.9886t) + 0.9886t cos(0.9886t)))e1 ∧ e3

+ (0.2555(2 − 0.9886t sin(0.9886t) − 2 cos(0.9886t)))e2 ∧ e3

and at the time t = 5.0236, we reach the point

qo = 0.5216e1 − 0.6741e2 + 3.643e3 − 1.439e1 ∧ e2 + 2.082e1 ∧ e3 + 1.611e2 ∧ e3. (36)

We are looking for the rotor which maps the multivector qo on the multivector qt. We consider the complete flags

{0} ⊂ NO(xt) ⊂ NO(xt ∧ z∗t ) ⊂ NO(zt ∧ z∗t ) ≅ R3,

{0} ⊂ NO(xo) ⊂ NO(xo ∧ z∗o) ⊂ NO(zo ∧ z∗o) ≅ R3.

We set Rm = R3 = id and map the plane xo ∧ z∗o to the plane xt ∧ z∗t by the rotor Rm−1 = R2 according to formula (26).
Explicitly,

R2 ∶= 0.1334 + 0.7083e1 ∧ e2 − 0.5483e1 ∧ e3 − 0.4242e2 ∧ e3

and we can map the multivector qo on the multivector qs = (xs, zs) = R2qoR̃2 in such a way that xs and zs lie in the plane
xo ∧ z∗o . Explicitly,

qs = (xs, zs) = −2.8510e1 + 2.3208e2 − 0.6956e3 − 2.641e1 ∧ e2 + 1.2523e1 ∧ e3 + 0.6767e2 ∧ e3.

Finally, we map the plane xs ∧ (xs ∧ zs)∗ to the plane xt ∧ (xt ∧ zt)∗ by rotor

Rm−2 = R1 = 0.3727 + 0.1716e1 ∧ e2 + 0.6863e1 ∧ e3 − 0.6005e2 ∧ e3.

Altogether, we found the rotor R = R1R2R3 and, when applied on (28), we got a geodesic going from the origin to the
point qt in the form

q = (x, z) = (−0.5302 + 0.4673t + 0.5302 cos(0.9886t) − 0.05136 sin(0.9886t))e1

− (0.008(22.124 + 36.347t − 22.124 cos(0.9886t) + 76.628 sin(0.9886t)))e2

+ (−0.4156 cos(0.9886t) + 0.4723t + 0.4156 − 0.3267 sin(0.9886t))e3

− (0.2(−1.5244 + 0.7536t sin(0.9886t) + 0.4086 sin(0.9886t)

+ 1.5244 cos(0.9886t) − 0.5923t cos(0.9886t) + 0.1884t))e1 ∧ e2

+ (−0.3184t + 0.1299 − 0.2223t cos(0.9886t) − 0.1299 cos(0.9886t)

− 0.06419t sin(0.9886t) + 0.547 sin(0.9886t))e1 ∧ e3

+ (−0.389 + 0.1923t sin(0.9886t) − 0.1358t + 0.0186t cos(0.9886t)

+ 0.389 cos(0.9886t) + 0.1186 sin(0.9886t))e2 ∧ e3.

In Figure 2, we present the trajectories (x1, x2, x3) and (z1, z2, z3), respectively.
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FIGURE 2 Trajectories (x1, x2, x3) and (z1, z2, z3) [Colour figure can be viewed at wileyonlinelibrary.com]

5.2 Example in (4, 7)
Our goal is to find the geodesic going from the origin to the target point

qt = (xt,𝓁t, 𝑦t) = e1 + 2e2 + e3 + 3e4 − e1 ∧ e2 + 2e1 ∧ e3 + 2e1 ∧ e4

using the invariants (33) at the target point. We compute

x = 1, 𝓁 · 𝓁 = 14, 𝑦 · 𝑦 = −9, (𝓁 · 𝑦)e1 = −6,

and together with the level set condition, we get the system with the invariants at qt. We solve the system numerically in
Maple, and we present the solution with the constants rounded up to four decimal digits as follows:

C = 0.6126,C1 = −0.7816,C2 = −0.5324,K = 0.8358, (37)

t = 6.0748. (38)

Using constant (37), we get a geodesic in the moduli space from the origin to the point qo in the form

q = (x,𝓁, 𝑦) = (−0.7816 cos(0.8358t) − 0.5324 sin(0.8358t) + 0.7816)e1

+ (−0.7816 sin(0.8358t) + 0.5324 cos(0.8358t) − 0.5324)e2

+ 0.6126te3 + 0.4471(0.8358t − sin(0.8358t))e1 ∧ e2

+ 0.3665 ((0.4449t − 1.563) sin(0.8358t) + (0.6533t + 1.065) cos(0.8358t) − 1.065 + 0.6533t) e1 ∧ e3

and at the time t = 6.0748, we reach the point

qo = (xo,𝓁o, 𝑦o) = e1 + 0.3878e2 + 3.722e3 + 2.688e1 ∧ e2 + 1.332e1 ∧ e3. (39)

We are looking for the rotor which maps the multivector qo on the multivector qt. We shall consider the complete flags
starting with the line NO(𝓁) and ending with the space NO(𝓁 ∧ 𝑦). To find the middle one, we can use the projection of
the line NO(𝓁) onto the plane NO(𝓁 ∧ 𝑦). Thus, we get

{0} ⊂ NO(𝓁t) ⊂ NO(𝓁t ∧ (𝓁t ∧ 𝑦∗t )
∗) = NO(𝓁t ∧ (𝓁t · 𝑦t)) ⊂ NO(𝓁t ∧ 𝑦t) ⊂ NO(𝑦t ∧ 𝑦∗t ) ≅ R4,

{0} ⊂ NO(𝓁o) ⊂ NO(𝓁o ∧ (𝓁o ∧ 𝑦∗o)∗) = NO(𝓁o ∧ (𝓁o · 𝑦o)) ⊂ NO(𝓁o ∧ 𝑦o) ⊂ NO(𝑦o ∧ 𝑦∗o) ≅ R4.

First, we map the hyperplane 𝓁o ∧ 𝑦o to the hyperplane 𝓁t ∧ 𝑦t by the rotor R3 according to formula (26). We obtain

R3 ∶= 0.4863 − 0.4335e2 ∧ e4 − 0.7587e3 ∧ e4.
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FIGURE 3 Trajectories x, (𝓁2,𝓁3,𝓁4) and (𝑦1, 𝑦2, 𝑦3) [Colour figure can be viewed at wileyonlinelibrary.com]

The next step is to map the hyperplane NO(𝓁o ∧ (𝓁o · 𝑦o) ∧ (𝓁o ∧ 𝑦o)∗) to the hyperplane NO(𝓁t ∧ (𝓁t · 𝑦t) ∧ (𝓁t ∧ 𝑦t)∗) by
the rotor R2 according to formula (26). Explicitly,

R2 ∶= 0.0387 + 0.9993e2 ∧ e3. (40)

Finally, we map the hyperplane NO(𝓁o ∧ (𝓁o ∧ (𝓁o ∧ 𝑦∗o)∗)∗) to the hyperplane NO(𝓁t ∧ (𝓁t ∧ (𝓁t ∧ 𝑦∗t )
∗)∗) by the rotor

R1 according to the formula (26). It turns out that R1 = 1. Altogether, R = R1R2R3 and, when applied on (5.2), we get a
geodesic going from the origin to the point qt as

q = (x,𝓁, 𝑦) = (−0.7816 cos(0.8358t) − 0.5324 sin(0.8358t) + 0.7816)e1

+ (0.5261 sin(0.8358t) − 0.3584 cos(0.8358t) + 0.3946t + 0.3584)e2

+ (−0.4749 sin(0.8358t) + 0.3235 cos(0.8358t) + 0.1235t − 0.3235)e3

+ ((0.2513 + 0.1542t) cos(0.8358t) + (−0.06803 + 0.1050t) sin(0.8358t) − 0.2514 − 0.09731t)e1 ∧ e2

+ ((0.07868 + 0.04827t) cos(0.8358t) + (−0.3871 + 0.03287t) sin(0.8358t) − 0.07869 + 0.2753t)e1 ∧ e3

+ ((0.2880 + 0.1767t) cos(0.8358t) + (0.1203t − 0.6112) sin(0.8358t) + 0.3342t − 0.2880)e1 ∧ e4.

In Figure 3 we present trajectories x, (𝓁2,𝓁3,𝓁4) and (𝑦1, 𝑦2, 𝑦3), respectively.

6 CONCLUSION

We presented the use of geometric algebra for the control systems invariant with respect to the orthogonal transforma-
tions. The main contribution of GA lies in a construction of the rotor between two bases of a vector space based only
on algebraic computations in a chosen GA. This allows us to use the geometric objects effectively, and analogously to
quaternions, the implementations are faster than the usual computations with matrices. We assessed an algorithm and
illustrated its use on two particular examples with filtration (3, 6) corresponding to a trident snake robot control and (4, 7)
corresponding to the control of a trident snake with flexible leg. All calculations were acquired using Maple packages
Clifford19 and DifferentialGeometry.20
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1. Introduction

Projective geometric algebra (PGA) is a model for Euclidean geometry and
computations with flat primitives. We use “PGA” to refer to geometric alge-
bras with degenerate signature (n, 0, 1), in particular it covers both Euclidean
PGA and dual Euclidean PGA, see [4,5]. Conformal geometric algebra (CGA)
defined by nondegenerate signature (n + 1, 1) contains the same model and,
moreover, allows Euclidean transformations of round primitives and dilation
(conformal geometry), see [8–11]. Clearly, PGA is a subalgebra of CGA but
the representation of Euclidean geometry looks very different at the first
sight. PGA representation of a point is a multivector of grade n − 1 while a
CGA point is of grade 1. This indicates that we have to think dually, or in
other words in a complementary way. In what follows, we clarify how PGA
can be viewed in CGA. We note that such an inclusion has been introduced
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in [12], yet we propose that in our notation it is clear that the flat primitives
precisely coincide in PGA and CGA. By a choice of basis and signs we show
that PGA duality can be completely described on the elements of CGA using
the CGA duality. Therefore our notation slightly differs compared to [6] and
Table 1. Consequently, a unified approach to both algebras is introduced. We
treat the case n = 3 in this paper, however, the results hold for arbitrary
dimension n, in particular also for n = 2. Our observation reads that if one
needs to use calculations in PGA, it is enough to implement CGA only and
therefore there is no need to implement a structure with degenerate metric.

First, we briefly introduce the frameworks of CGA and PGA as models
of Euclidean geometry and we summarize basic formulae in Sect. 2. In Sect. 3,
we show that there are two naturally related copies of PGA in CGA, see
Proposition 3.1. After the identification of the two copies, duality in PGA
is obtained in terms of CGA operations, see Proposition 3.2. The duality
directly describes the correspondence between flat primitives and versors for
Euclidean transformations in CGA, and the objects and versors in PGA, see
Proposition 3.5. Basic ideas are then demonstrated on a simple example.

1.1. Notation

We denote elements of geometric algebras by bold letters - capitals for gen-
eral multivectors and lower case letters for vectors. We also set the nota-
tion such that we can easily distinguish the elements of different algebras.
Namely, A,B, . . . will denote multivectors in PGA, Ac,Bc, . . . will denote
multivectors in CGA and AE ,BE , . . . will denote the elements of G3, i.e.
the geometric algebra of three dimensional space. Similar notation will be
used for objects and transformations of algebras, namely P, �,p will denote
a point, line and plane in PGA, respectively, while Pc, �c,pc will denote di-
rect representations of the respective objects in CGA. The corresponding
dual representations will be accented by star superscript. By PE we mean
the representation of a Euclidean point in G3. The versors for rotations and
translations in PGA and CGA will be denoted by R,T and Rc,Tc, respec-
tively. In order to distinguish among dualities in different algebras and to be
consistent with the notation in the literature we denote the duality in CGA
by an ordinary star symbol, by ∗P the duality in PGA and by ∗E the duality
in G3, respectively.

2. Geometric Algebras for Euclidean Geometry

The geometric algebra G3 can describe vector geometry and rotations, see e.g.
[1] for the geometric background. If we want to describe Euclidean geometry,
we need to add a null vector in order to represent translations. The minimal
way is to raise the dimension by one and add a one-dimensional space of null
vectors. This model is known as the projective geometric algebra (PGA).
However, this procedure returns a Clifford algebra with a degenerate qua-
dratic form. Alternatively, we may raise the dimension by two and add a
symplectic two–dimensional vector space. Then the quadratic form is nonde-
generate with indefinite signature and we have even two linearly independent
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null vectors. The resulting model is known as conformal geometric algebra
(CGA). We list the basic facts and formulae of both models.

2.1. Euclidean Geometry in CGA

From the algebraic point of view, CGA for dimension 3 Euclidean space
is a Clifford algebra defined by a nondegenerate quadratic form of signature
(4, 1, 0). Vectors e0, e1, e2, e3, e∞ denote an orthogonal basis of the generating
vector space R4,1 with inner product given by the quadratic form

B =

⎛
⎝

0 0 −1
0 13×3 0

−1 0 0

⎞
⎠ . (1)

Hence e0, e∞ are null vectors and e0 · e∞ = e∞ · e0 = −1. The duality in
CGA is defined by

A∗
c = AcI

−1
c = Ac · I−1

c , (2)

where Ic = e0123∞ is the conformal pseudoscalar, I−1
c = −Ic. The geometry

in CGA is defined by the following embedding of a Euclidean point PE into
the geometric algebra G3, particularly onto an element Pc of the form

Pc = e0 + PE + 1
2 (PE · PE)e∞, (3)

where PE · PE coincides with the square of the Euclidean norm. In coordi-
nates, if PE = xe1 + ye2 + ze3, then we get the well known formula

Pc = e0 + xe1 + ye2 + ze3 + 1
2 (x2 + y2 + z2)e∞ (4)

together with the standard property Pc · Pc = 0. The nondegeneracy of the
quadratic form (1) implies that we have two mutually dual representations
of geometric primitives in CGA. Namely, a multivector Ac is the direct rep-
resentation (also called Outer Product Null Space (OPNS) representation)
of an object in CGA if and only if the object is formed exactly by points Pc

satisfying

Pc ∧ Ac = 0. (5)

The duality in CGA given by (2) defines a dual representation (or IPNS
representation). Namely, the same object can be also represented by A∗

c in
the sense that it is formed exactly by points Pc satisfying

Pc · A∗
c = 0, (6)

where the dot denotes the inner product. Note that this duality of represen-
tations follows from the duality between the inner and outer product. The
direct representation is useful for constructing geometric primitives as a join
of points while the advantage of the dual representation is that one can eas-
ily read off the internal parameters of the primitives and find intersection of
spheres.

Taking outer products of points in CGA we get representatives of general
spheres spanned by these points, i.e. point pairs, circles, spheres and also flat
primitives if one of the points lies at infinity. Thus for a flat point FPc, a line
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�c spanned by points P1c,P2c and a plane pc spanned by points P1c,P2c,P3c

we have the following respective representations

FPc = Pc ∧ e∞, (7)

�c = P1c ∧ P2c ∧ e∞, (8)

pc = P1c ∧ P2c ∧ P3c ∧ e∞. (9)

Let us also recall that Euclidean transformations are represented by
versors which act on objects by conjugation. The versor for translation by
vector �t, which we identify with tE ∈ G3, is given by

Tc = e− 1
2 tEe∞ = 1 − 1

2tEe∞. (10)

The versor for rotation by an angle α and with normalised dual representation
of the rotation axis �∗, i.e. �∗ · �∗ = −1, is represented by CGA element

Rc = e
1
2 α�∗

= cos α
2 + sin α

2 �∗. (11)

Remark 2.1. For general dimension n, we consider the orthogonal basis
e0, e1, . . . , en, e∞ ∈ Rn+1,1 with inner product given by matrix (1), where
the central block is an n × n identity matrix. The duality prescription (2)
remains, however, the pseudoscalar satisfies

I−1
c = (−1)n(n−1)/2Ic, (12)

thus the duality map is either an involution or an anti–involution depend-
ing on the dimension. Equation (3) defining a CGA point is independent of
the dimension as well as formulae (10) and (11) for CGA transformations.
The representations of Euclidean primitives (by which we understand flat
primitives only) in CGA are P1c ∧ · · · ∧ Pkc ∧ e∞ for any 1 ≤ k ≤ n.

2.2. Euclidean Geometry in PGA

We shall use conventions and notation as close to [4,5] and [6] as possible,
however, we modify the sign conventions for the duality in PGA slightly. We
want to stress that these changes do not influence the validity of general for-
mulae in [6] for incidence relations, projections, rejections, etc. We also note
that in [3] the author strictly distinguishes geometric algebras generated by
R3,0,1∗ and R3,0,1, i.e. plane-based and point-based models, respectively. This
is correct but algebraically these are isomorphic vector spaces and as algebras,
(G3,0,1,∨) ∼= (G∗

3,0,1,∧) via Poincare isomorphism. Indeed, the identification
of regressive product and wedge product via this duality allows us to use one
algebra with both operations. This concept allows representatives of both
points and planes to be elements of a single algebra. Algebraically, PGA for
3D Euclidean space is a Clifford algebra generated by a degenerate quadratic
form of signature (3, 0, 1). We consider a basis of the generating vector space
R3,0,1 in which the quadratic form is given by the matrix

B =

(
0 0
0 13×3

)
, (13)

and we denote this basis by e0, e1, e2, e3, i.e. e0 is a null vector. Note that
the symbols for basis elements are the same as symbols for the corresponding
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basis elements in CGA in this notation, which is usual in the literature. In-
deed, PGA can be viewed as a subalgebra of CGA spanned by these elements.
However for relating the geometry of PGA and CGA, the e0 from PGA plays
rather the role of the element e∞ in CGA notation. This relation is discussed
in detail in the following sections.

The duality in PGA cannot be obtained in the same way as the duality
in CGA, by division with the pseudoscalar, because the quadratic form (13)
defining PGA is degenerate. One can use Hodge duality approach, [13], i.e.
that the dual to a basis element A can be defined as the complement to the
projective pseudoscalar, A∧A∗ = I or in the reverse order. However, such a
map is neither involutive nor anti–involutive in general and the signs coming
from such a definition are not compatible with the CGA duality. Therefore we
use the idea of a Poincare duality approach, [4,5], which is a mapping between
an algebra and its dual. In our concept, both these algebras can be understood
as isomorphic subalgebras of CGA which leads to the Definition 3.2, see the
next section. Note that similar concept of duality has been introduced in [12].

The representation of the Euclidean geometry in PGA is given by the
embedding of a point. In coordinates, a Euclidean point PE = xe1+ye2+ze3

is represented in PGA by a multivector of grade three

P = xe032 + ye013 + ze021 + e123. (14)

The formula for a point in PGA can be written in a coordinate free way
using the Euclidean duality ∗E , given by the division with the Euclidean
pseudoscalar IE = e123, particularly P = e0P

∗E

E +IE , which can be rewritten
as

P = IE + P∗E

E e0, (15)

since the grade (width of the basis blades) of P∗E

E is two. The degeneracy
of the PGA quadratic form (13) causes us to have only one representation
of geometric primitives in PGA. Since the grade of points is three, therefore
sub–maximal, the only way to represent primitives is as the null space of the
regressive product (RPNS representation). Recall that the regressive prod-
uct is dual to the outer product, i.e. (A ∨ B)∗ = A∗ ∧ B∗. Hence a point
represented by P belongs to an object represented by A if and only if

P ∨ A = 0. (16)

By regressive products of respective points in PGA we get representa-
tives of flat primitives. Thus for a line � spanned by points P1,P2 and a
plane p spanned by points P1,P2,P3 we have the representations

� = P1 ∨ P2, (17)

p = P1 ∨ P2 ∨ P3. (18)

One can find several formulae for PGA representations of Euclidean
transformations in [4], however a direct formula for translation by vector tE

is missing. If one reads between the lines, the versor for translation in PGA
is given by

T = e− 1
2e0tE = 1 − 1

2e0tE . (19)
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Note that this formula is a direct consequence of formula (10) for the trans-
lator in CGA and Proposition 3.5 which will be proved later. Rotation is
realized by (11), the same form of a versor as in CGA, i.e. Rc. However, the
dual line �∗ in the formula must be replaced by � given by (17) in this case.

Remark 2.2. For general dimension n, we consider the orthogonal basis
e0, e1, . . . , en ∈ Rn,0,1 with the inner product given by matrix (13), where the
lower–right block is an n × n identity matrix. Equation (15) defines a PGA
point in any dimension. The representations of transformations are indepen-
dent of the dimension and Euclidean primitives are given by P1 ∨ · · · ∨ Pk

for any 1 ≤ k ≤ n. The duality in nD PGA is discussed in the next Section,
see Remark 3.4 .

3. PGA in CGA

Our main finding will be that the usual choice of basis and inner product
in CGA, gives two distinct subalgebras of CGA which are both algebraically
isomorphic to PGA and also an involutive isomorphism on CGA that relates
these two subalgebras. In such identification, the duality in PGA can be seen
as a “twisted” CGA duality. We note that this concept has been already
published in [12]. Indeed, the author represents the projectivised exterior
algebras of Rn+1 and Rn+1∗ as subalgebras of CGA and defines the duality
by means of two different pseudoscalars of these spaces by assertion (18.37).
The form of this duality corresponds to our concept up to the sign. In the
notation of [12], Ŵ corresponds to CGA0 and Ŵ ∗ to CGA∞ . Furthermore, Ĵ
corresponds to �. We used notation that is more familiar to mathematicians
and provide connections with CGA to clarify transitions between algebras.

3.1. Duality in PGA

In CGA, the subalgebra formed by elements which do not contain e∞ is
present as well as the subalgebra formed by elements which do not contain
e0. The former is generated by {e0, e1, e2, e3} and will be denoted by CGA0

and the latter is generated by {e1, e2, e3, e∞} and will be denoted by CGA∞.
The notation accents the null vector present and stresses the fact that both
are subalgebras of CGA.

The choice of CGA basis and the inner product defines also a distinct
involution in CGA which relates subalgebras CGA0 and CGA∞. Namely, the
choice defines an isomorphism between the two vector spaces, R4,1 and its
dual, by taking the usual dual basis. The quadratic form (1) defines another
isomorphism between these spaces which is known as the musical isomor-
phism in the literature. The composition of these two isomorphisms is a
bijective linear map of R4,1 onto itself, for i = 1, 2, 3 given by

� : ei �→ ei, e0 �→ −e∞, e∞ �→ −e0, (20)

where we used the notation of musical isomorphism in order to distinguish
between the duality on vector space R4,1 and the usual CGA duality. The
minus signs correspond to the choice of inner product (1), i.e. e0 · e∞ =
−1. This map is a linear involution and preserves the quadratic form in
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Figure 1. Two copies of PGA inside CGA

CGA, thus it defines a unique extension to CGA as a homomorphism of
Clifford algebras. In the following, we will use the symbol � also for this
extension. Using this notation we can summarize the above observations into
the following statement.

Proposition 3.1. The choice of basis of null vectors e0, e∞ in CGA defines
two subalgebras CGA0 and CGA∞ both isomorphic to PGA and an involutive
isomorphism � between them which acts by replacing e0 with −e∞ and vice
versa in each basis blade.

Let us describe the structure of subalgebras CGA0 and CGA∞ and the
isomorphism � in a more detailed way. The intersection of these subalgebras
is generated by 〈e1, e2, e3〉 with inner product given by the identity matrix,
thus it forms the algebra G3. The map � that switches between the two
subalgebras acts as identity on this intersection. On the complement of the
union of the subalgebras to CGA, it acts as minus identity. Note that the
union of subalgebras contains the elements with either e0 or e∞ only, therefore
the complement to CGA is not empty containing elements with both e0 and
e∞. Schematically, this is depicted in Fig. 1.

We stress that � is an isomorphism of Clifford algebras and thus it
preserves all products in the algebra.

Once we know how to identify PGA with any of the two subalgebras in
CGA, it is easy to understand duality in PGA. It can be defined in the same
way as duality in CGA, by multiplication with a suitable pseudoscalar inverse.
But we have to multiply by the inner product and also the pseudoscalar
inverse must be taken with respect to the inner product. Such an inversion
exists but it lies in the other subalgebra. Indeed, it is easy to see that I·I� = 1
and thus for I = e0123 ∈ CGA0, the inner product inverse is I� = e123∞ ∈
CGA∞ and vice versa: for I� = e123∞ ∈ CGA∞, the inner product inverse is
(I�)� = I.

Definition 3.2. Understanding PGA as a subalgebra of CGA, PGA duality is
an involution defined for each A ∈ PGA by

A∗P = (A · I�)� = A� · I. (21)
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Figure 2. Duality in PGA viewed as a subalgebra of CGA

Note that the equality in the definition follows from the fact that � pre-
serves the inner product. In the diagram visualisation, this can be described
by the commutative diagram in Fig. 2. The duality in PGA is the composition
from left to right, or equivalently from right to left, since it is an involution.

We also note that using a pseudoscalar in another subspace to move
between subspaces is not new, see e.g. [2,3,12].

Having the duality in PGA defined according to the Definition 3.2, it is
easy to relate it to the standard duality in CGA. Namely, it is a CGA duality
twisted by a null vector as follows.

Proposition 3.3. For A ∈ PGA the following identities hold

A∗P = (A ∧ e∞)∗� = (A� ∧ e0)
∗. (22)

Proof. By definition of PGA duality (21), we need to show (A∧e∞)∗ = A ·I�

in order to prove the first identity. Indeed, we compute

(A ∧ e∞)∗ = (A ∧ e∞) · I−1
c = A · (e∞ · I−1

c ) = A · I�.

The first equality is the CGA duality in terms of the inner product, see (2).
The inner product coincides with the left contraction in this case since I−1

c

is of the highest grade. Then the second equality is a general property of
left contraction. The third equality follows from the fact that e∞ · I−1

c =
e∞ · e0321∞ = (e∞ · e0)e321∞ = −e321∞ = I�. The second identity in the
proposition follows from the definition of isomorphism �. Namely, (A∧e∞)� =
−A� ∧ e0 and (I−1

c )� = −I−1
c . �

We also get a sort of PGA duality between the inner product and outer
product similar to the duality between these products in CGA. Namely, sup-
posing the grade of a blade A is less or equal to the grade of a bladeB, we
have

(A ∧ B)∗P = A� · B∗P . (23)

This formula holds for general multivectors A,B if we replace the inner prod-
uct on the right–hand side by left contraction. It is worth to look also at the
relation between the duality in PGA and the usual Euclidean duality. For
that we need to express a multivector A ∈ PGA as a sum CE + DE ∧ e0,
where CE ,DE ∈ G3. Then we compute

A∗P = (CE + DE ∧ e0)
∗P = −D∗E

E + C∗E

E ∧ e0. (24)
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Table 1. PGA duality

1 e0 e1 e2 e3 e01 e02 e03 e12 e13 e23 e012 e013 e023 e123 I

A a b c d e f g h i j k l m n o p
A∗P p o −n m −l −k j −i −h g −f −e d −c b a

This formula is particularly convenient for an explicit computation of dual
basis blade coefficients, see Table 1.

Remark 3.4. The definition of the isomorphism � is independent of the di-
mension. However, for general dimension n we have

I · I� = (−1)n(n+1)/2, (25)

thus the inner product inversion to I gains this sign and it should also enter
in formula (21) for the definition of the PGA duality. Note that PGA duality
is an involution or anti–involution depending on the dimension. Formulae
(22) and (23) hold in any dimension. Indeed, the only change in the proof of
Proposition 3.3 is that e∞ · I−1

c = (−1)n(n+1)/2I�. Equation (24) changes in
nD to

(CE + DE ∧ e0)
∗P = (−1)nD∗E

E + C∗E

E ∧ e0.

3.2. Geometry

All geometric primitives in PGA are constructed by means of the regressive
product which is dual to the outer product, c.f. (17) and (18). Let us start
by computing the projective dual of a point. By applying formula (21) for
the PGA duality to the PGA point (15) we get

P∗P = e0 + PE . (26)

Hence a point in PGA is the dual to its usual homogeneous representation
in R4. Now we compute the representation of a PGA point in the subalgebra
CGA∞. Applying the isomorphism � to formula (15) for a point we get

P� = IE − P∗E

E e∞. (27)

We will show in the following Proposition 3.5 that this is a formula for the
dual representation of a flat point in CGA. Indeed, looking at the direct
representations of flat primitives and Euclidean transformations in CGA we
observe that they all lie in the subalgebra CGA∞. Hence this subalgebra is
the suitable copy of PGA in CGA for geometric purposes and the map � gives
a geometric embedding in the following sense.

Proposition 3.5. Let P, �,p be representations of a point, a line and a plane
in PGA, respectively. Then P�, ��,p� are the dual (IPNS) representations of
the same point (viewed as a flat point), line and plane in CGA. Moreover, if
V is a versor for a Euclidean transformation in PGA, then V� is the versor
for the same transformation in CGA.
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Proof. At first we prove the correspondence of points. We need to show that
(27) is the form of the dual flat point FP∗

c = (Pc∧e∞)∗. Indeed, we compute

FP∗
c = (e0∞ + PEe∞)∗ = IE − P∗E

E e∞ = P�. (28)

For the proof of the correspondence between other geometric primitives we
use the formula for dual point in terms of a conformal point. Since the dual
point (26) actually is the conformal representation of a point without the
quadratic part, we can write

P∗P = Pc + (e0 · Pc)e∞. (29)

Now we apply this formula to a PGA line � = P1 ∨ P2. By the definition of
the regressive product and formula (22) for the PGA duality we get

�� = [(P1c + (e0 · P1c)e∞) ∧ (P2c + (e0 · P2c)e∞) ∧ e∞]
∗

= (P1c ∧ P2c ∧ e∞)∗ = �∗
c .

Similarly, for a plane p = P1 ∨ P2 ∨ P3 we get

p� = (P1c ∧ P2c ∧ P3c ∧ e∞)∗ = p∗
c ,

thus the representation of any object in PGA coincides with its dual repre-
sentation in CGA. The claim about versors follows from the correspondence
between objects and the fact that � preserves the geometric product and that
it commutes with the reversion operation. �
Remark 3.6. The duality in PGA is defined in such way that dual PGA
points always coincide with their homogeneous representations, i.e. the for-
mula (26) holds for arbitrary dimension. On the other hand, the correspon-
dence in Proposition 3.5 changes sign according to the sign of (25). Namely,
in dimension n we have

P� = (−1)n(n+1)/2(Pc ∧ e∞)

and also the remaining objects are endowed with the same sign.

3.3. Example

It is obvious that we do not need the quadratic parts of points in CGA when
we deal with flat primitives only. PGA is certainly more efficient in that
case. However, we do not need to abandon the CGA concept while using all
the amazing formulae from PGA. We only have to keep in mind that points
correspond to flat points and that the PGA duality differs from conformal
duality, see (21) and (22).

Let us consider an elementary example to demonstrate a convenient
way of using PGA inside CGA. We have a point P lying on a line � which
intersects a plane p and we have a sphere s which also intersects the plane,
see Fig. 3.

Then we can use formulae from PGA to compute the intersection of the
line and plane � ∧ p and the orthogonal projection of the point to the plane
(P · p)p, the orthogonal projection of the line to the plane (� · p)p. If we
need to calculate with the sphere, we only need to replace e0 by −e∞ in the
representations of flat primitives, which is realized by the map �, and then
we can use all formulae known in CGA. For instance, the intersection of the
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Figure 3. Intersections and projections of flats and rounds

sphere and the plane is a dual circle p� ∧ s∗, the orthogonal projection of the
point to the sphere is (P� · s∗)s∗ and the orthogonal projection of the line to

the sphere is a circle (�� · s∗)s∗.
Figure 3 was created by the web–based experimantal platform of

Ganja.js [7]. The corresponding full code follows.

// Create a C l i f f o r d Algebra with 4 ,1 metr ic f o r 3D CGA.

Algebra (4 ,1 ,()= >{

// We s t a r t by d e f i n i n g a nu l l bas i s , and upcast ing f o r po in t s

// which we need f o r rounds only

var n i = 1e4+1e5 , no = .5 e5 −.5 e4 ;

var up = (x)=> no + x + .5∗ x∗x∗ ni ;

// Sharp map in both d i r e c t i o n s in terms o f CGA products

var IN = (x)=> x + ni ˆ(no<<x ) + noˆ(no<<x ) ;

var NI = (x)=> x + ni ˆ( ni<<x ) + noˆ( ni<<x ) ;

// PGA pseudosca la r

var I = noˆ1 e1 ˆ1 e2 ˆ1 e3 ;

// PGA dua l i t y and upcast ing to PGA

var dual = (x)=> NI(x)<<I ;

var upP = (x)=> dual ( no+x ) ;

// De f i n i t i o n o f r e g r e s s i v e product f o r 2 and three inputs

var reg = (x , y)=>dual ( dual ( x )ˆ dual ( y ) ) ;

var reg3 = (x , y , z)=>dual ( dual ( x )ˆ dual ( y )ˆ dual ( z ) ) ;

// Formulas from PGA can be used in CGA

// We de f i n e 4 po in t s

var P = upP(0 . 5 e1 −1.5 e3 ) ;

var P1 = upP(1 e1 ) , P2 = upP(1 e2 ) , P3 = upP(−1e3 ) ;
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// Construct ing l i n e and plane from po in t s

var l = ()=> reg (P, P2 ) ;

var p = ()=> reg3 (P1 , P2 , P3 ) ;

// I n t e r s e c t i o n o f l i n e and plane

var Q = ()=>pˆ l ;

// Pro j e c t i on o f po int and l i n e to plane

var Pperp = ()=>(p<<P)∗p ;
var lpe rp = ()=>(p<<l )∗p ;

// I f we want we can a l s o i n t e r s e c t with a sphere or p r o j e c t on i t

var s = ()=>up ( 0 . 5 e2+1e1 ) −0.5∗0.25∗ ni ;

var c = ()=>s ˆNI (p ) ;

var cperp = ()=>(s<<NI( l ) )∗ s ;

// Graph the items as CGA elements A −> ! NI (A)

document . body . appendChild ( t h i s . graph ( [

0xE0880000 , ! NI (P) , ”P” , // po int

0xE0880000 , ! NI (Q) , ” l ˆp” , // po int

0xE0880000 , ! NI ( Pperp ) , ” (P. p)p” , // po int

0xE0000000 , ! NI ( lpe rp ) , ” ( l . p )p” , // l i n e

0xE00000FF , ! cperp , ” ( l . s ∗) s ∗” , // c i r c

0xE00000FF , ! c , ”pˆ s ∗” , // c i r c

0xE0000000 , ! NI ( l ) , ” l ” , // l i n e

0xE0008800 , ! NI (p ) , ”p” , // plane

0xE00000FF , ! s , ” s ” // sphere

] ,{ conformal : true , g l : true , g r id : f a l s e } ) ) ;

} ) ;

4. Conclusion

We introduced a notation for PGA primitives that is compatible with their
CGA description, once PGA is understood as a subalgebra of CGA. We also
solved the issues with the noninvertibility of the PGA pseudoscalar in com-
puting duality and showed the exact forms of dual counterparts to geometric
primitives in PGA using another copy of PGA in CGA. This has great po-
tential for symbolic calculations and their software implementation, because
we can flexibly switch between PGA notation which is efficient for flat object
manipulation and CGA operations on round elements in our problems. The
next step is to show the advantages of this approach in various computational
platforms, together with code optimisation and applications. Generally, the
idea is that it is enough to implement CGA only and there is no need to
implement an extra structure with degenerate metric.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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Jaroslav Hrdina ∗ and Aleš Návrat

Abstract. We apply the conformal geometric algebra (CGA) to the gen-
eralized binocular vision problem. More precisely, we reconstruct a 3D
line from its images on the image planes of two cameras whose mutual
position is specified by a given Euclidean transformation which depends
on an arbitrary number of parameters. We represent all transforma-
tions by CGA elements which allows us to derive the general equations
of 3D line reconstruction by formal CGA elements manipulation. The
transformation equations can be solved w.r.t. either motor or projec-
tion unknown parameters. We present two specific examples, show the
explicit form of two particular motors and solve the appropriate equa-
tions completely.

Mathematics Subject Classification. Primary 15A66; Secondary 68T45.

Keywords. Conformal geometric algebra, Clifford algebra, Binocular
vision, Projective geometry.

1. Introduction

One of the main problems of binocular robot vision is a 3D object pose
estimation from the data obtained by a pair of cameras. It can be solved in two
steps. First, the symmetry axes are extracted from the camera image planes.
Second, the pose estimation problem for these axes is solved. We discuss the
second step in terms of conformal geometric algebra and find a solution of
pose estimation problem for lines (axes) in a general case of two cameras in
arbitrary positions. Our particular task relates to the case where the camera
motions are restricted by construction with a certain degree of freedom and
thus their positions in space are given by specific transformations depending
on a certain number of parameters. The task is to define the camera position
transformation to achieve the prescribed shape of an object in question whose
position is given as part of the input data. Typically, this is solved to center
the observed object on one camera. Furthermore, we assume that the cameras

This work was supported by Grants of the Grant Agency of the Czech Republic 17-21360S,

“Advances in Snake-like Robot Control”.
∗Corresponding author.

67



1946 J. Hrdina and A. Návrat Adv. Appl. Clifford Algebras

are in arbitrary mutual position the parameters of which are the only data
needed. In classical literature, e.g. [7,8], the coordinate system is attached to
one of the cameras which will be referred to as the first one. In our case, we
choose the coordinate system connected to the base of the camera stand to
simplify the correspondence of the rotation axes. We consider both cameras
to be the pin-hole model and introduce the description of each of them as a
pair of algebra elements, more precisely as a point F (focus) and a point pair
K = P ∧ Q from the camera projection plain such that the lines F ∧ P ∧ e∞
and K ∧ e∞ are orthogonal.

In this setting, the problem is solved by symbolic computations with
conformal geometric algebra (CGA) objects in general, but we discuss the
projective geometric algebra (PGA) setting simultaneously. Indeed, the last
Section shows one of the possible directions that we intend to explore in
the future, particularly the human vision where PGA is not sufficient tool.
Another direction to be considered is e.g. the image analysis from the omni-
directional camera.

The reason to use the GA (CGA) structures to solve such topics lies
in the fact that the properties are independent of the particular mecha-
nism. In particular, we derive formulas (3) and (4) which hold in general
for any system. In Sect. 5 we show on two elementary examples the appli-
cation of our computations onto two particular mechanisms and we present
the numeric results for several specific settings. In the sense of an object
oriented approach, we divide the binocular vision problem into three parts.
The most abstract one contains the elaboration with the GA elements by
means of standard operations and exploits their natural properties as the
direct and dual representation of the Euclidean object. Our aim is to achieve
a mechanism-independent geometric solution. Afterwards, we choose a par-
ticular GA (despite the fact that in this text we assume to work within CGA
and use several arguments valid for CGA only, from the remarks in the text
it is obvious that e.g. in case of a pin-hole camera the choice of CGA is not
completely necessary). Finally, we introduce the equations of the particular
mechanism which follows from the forward kinematic chain. Thus in general,
the motors transforming the camera position from the initial ideal state to
the actual one are obtained. Note that the computations are performed in
Maple, package CLIFFORD [1], and the final set of equations, whose form does
not demand deeper knowledge of CGA, can be used in engineering applica-
tions.

2. Conformal Geometric Algebra: CGA

We recall some elementary facts about CGA and specify our particular set-
ting. Note that the properties and definitions of conformal geometric algebras
can be found in e.g. [2,4,7] and their applications in engineering in e.g. [3,5].
Classically, for modeling a 3D robot, the CGA is the Clifford algebra Cl(4, 1)
and an embedding
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c : R3 → K4 ⊂ R4,1

of the 3D Euclidean space is considered, where K4 is a null cone in the
Minkowski space R4,1. We describe the embedding explicitly in a suitably
chosen basis which in this paper is denoted by e0, e1, e2, e3, e∞ ∈ R4,1. This
basis is chosen so that the matrix of the quadratic form is

B =

⎛
⎝

0 0 −1
0 13×3 0

−1 0 0

⎞
⎠ ,

where 13×3 is an identity 3×3 matrix. With these conventions, the embedding
is of the form

c(x) = x +
1

2
x2e∞ + e0.

Note that e0 and e∞ play the role of the origin and the infinity, respectively.
Note also that x2 is a scalar which is equal to ‖x‖2, the square of usual
Euclidean norm. We recall that the algebra operation is called the geometric
(Clifford) product and two further elementary operations on CGA are derived;
the inner product (left contraction) and outer (wedge) product. We recall just
the basic properties used in this text. The wedge product of two basis blades
Ek and El of grades k and l, respectively, is defined as

Ek ∧ El := 〈EkEl〉k+l

and the left contraction is defined as

Ek · El := 〈EkEl〉l−k if l ≥ k and 0 otherwise,

where 〈 〉k is the grade projection into grade k. In the special case k = l = 1,
the factors are vectors and the inner product and outer product correspond to
the symmetric and antisymmetric part of the geometric product, respectively.
These products can be used to define the mapping c−1 : K4 − {0, e∞} → R3

by

c−1(X) = P⊥
e∞∧e0

(
X

−X · e∞

)
=

X − (X · (e∞ ∧ e0))(e∞ ∧ e0)

−X · e∞
,

where P⊥ denotes the orthogonal complement to the projection onto e∞ ∧e0,
which is the left inversion of c, i.e. c−1(c(x)) = x and allows an identification
of the projectivized null cone PK4 and one point compactification R3 ∪{∞}.

The embedding c has the fundamental property that the inner product
of two conformal points is, up to the factor −1/2, the square of the Euclidean
distance. Indeed,

c(x) · c(y) =
(
x + 1

2x2e∞ + e0

)
·
(
y + 1

2y2e∞ + e0

)

=
〈
xy + 1

2 (y2x − x2y)e∞ + (x − y)e0 + 1
2x2e∞e0 + 1

2y2e0e∞
〉

0

= xy − 1
2x2 − 1

2y2 = − 1
2 (x − y)2 = − 1

2‖x − y‖2.

Thus the embedding c, together with the inner product, gives a linearization
of a squared distance. As a consequence, the round objects which are given
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Table 1. Wedge basis of G4,1

Scalars 1
Vectors e0, e1, e2, e3, e∞
2-blades e0 ∧ e1, e0 ∧ e2, e0 ∧ e3, e0 ∧ e∞, e1 ∧ e2,

e1 ∧ e3, e1 ∧ e∞, e2 ∧ e3, e2 ∧ e∞, e3 ∧ e∞
3-blades e0 ∧ e1 ∧ e2, e0 ∧ e1 ∧ e3, e0 ∧ e1 ∧ e∞, e0 ∧ e2 ∧ e3,

e0 ∧ e2 ∧ e∞, e0 ∧ e3 ∧ e∞, e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e∞,
e1 ∧ e3 ∧ e∞, e2 ∧ e3 ∧ e∞

4-blades e0 ∧ e1 ∧ e2 ∧ e3, e0 ∧ e1 ∧ e2 ∧ e∞, e0 ∧ e1 ∧ e3 ∧ e∞,
e0 ∧ e2 ∧ e3 ∧ e∞, e1 ∧ e2 ∧ e3 ∧ e∞

Pseudoscalar I = e0 ∧ e1 ∧ e2 ∧ e3 ∧ e∞

by quadratic expressions (spheres) are represented by linear objects and the
Euclidean motions are represented by orthogonal transformations.

Algebraically, we consider the geometric algebra on R4,1, i.e. the algebra
denoted as G4,1 which is the Clifford algebra Cl(4, 1), see [6]. In terms of
the basis e0, e1, e2, e3, e∞ of R4,1, a basis of G4,1 is given by Grassmann
monomials (blades) as displayed in Table 1.

The Euclidean objects which can be represented by elements in this
algebra are spheres of any dimension, i.e. point pairs, circles, spheres, points
(spheres of zero radius), linear objects of any dimension, i.e. flat points, lines,
planes, and also Euclidean directional and tangential elements. They are
represented in the following way. Let S ⊆ R3 be one of the Euclidean elements
listed above. Then it is viewed as an element S ∈ G4,1 such that

x ∈ S ⇔ c(x) ∧ S = 0.

Note that this is so-called outer product representation or direct represen-
tation. Dually, in the inner product representation, S is represented by an
element S∗ and the condition reads

x ∈ S ⇔ c(x) · S∗ = 0.

Note that on the algebra level the duality is obtained by dividing an algebra
element S by the pseudoscalar I, i.e. S∗ = S/I.

In the direct representation, the outer product ∧ indicates the construc-
tion of a geometric object with the help of points Pi that lie on it. A point
pair (0D sphere), is defined by two points P1 ∧ P2. A circle (1D sphere) is
defined by three points P1 ∧ P2 ∧ P3 or a point pair and a point. Finally, a
sphere (2D sphere) is defined by four points P1 ∧ P2 ∧ P3 ∧ P4 or two point
pairs, etc. A plane and line can also be defined by points that lie on it and
by the point at infinity, i.e. a line is represented by P1 ∧ P2 ∧ e∞ and a plane
by P1 ∧P2 ∧P3 ∧ e∞. In the dual representation, a sphere can be represented
by its center P and its radius r as P − 1

2r2e∞. A plane is defined as n+de∞,
where n is the unit normal vector of the plane and d is the distance to the
origin.
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In this sense, the wedge product is a constructive operator, i.e. A ∧ B
is an object spanned by A and B. The duality operator allows a definition of
the dual to wedge product, so called meet,

A ∨ B = (A∗ ∧ B∗)∗.

Geometrically, this gives a CGA representative of the intersection of objects
A and B.

Next advantage of CGA is that the Euclidean motions are also repre-
sented by certain algebra elements. Namely, an Euclidean transformation of
an element S is realized in CGA by conjugation with an invertible element
T ∈ G4,1, i.e.

S �→ TST−1,

such that T T̃ = 1. Note that the inverse T−1 can be replaced by reverse T̃ ,
see [7] for details. For instance, the translation in the direction t = t1e1 +
t2e2 + t3e3 is realized by the multivector (translator)

T = 1 − 1

2
te∞

and the rotation around the origin and the normalized axis L = L1e1+L2e2+
L3e3 by an angle φ is realized by the multivector (rotor)

R = e− 1
2 lφ = cos

φ

2
− l sin

φ

2
,

where l = L∗
3D = L(e1 ∧ e2 ∧ e3) = L1(e2 ∧ e3) + L2(e3 ∧ e1) + L3(e1 ∧ e2).

The rotation around a general point and axis is given by conjugation with an
element TRT̃ . A general composition of a translator with a rotor is called a
motor.

Remark 2.1. For some applications it is sufficient to consider an embedding in
a 4D projective space only. To generate three dimensional projective geomet-
ric algebra (PGA), Euclidean vectors are embedded in an four dimensional
affine space:

p(x) = xe1 + ye2 + ze3 + e0

where the ei are the canonical basis of R4. If a ∈ R3, then the corresponding
homogenized vector p(a) is denoted as A and given vector A ∈ G4, the
corresponding Euclidean vector is

a =
A

A · e0
− e0.

Using the concept of direct representation the bivector A ∧ B represents the
line trough a and b (after homogenisation), where A = p(a), B = p(b) are
the points. Finally, the outer product of three homogeneous vectors in G3

represents a plane in the direct representation. Note that this PGA approach
is implicitly contained in the CGA approach.
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Figure 1. Description of camera position

3. Camera Position

First of all, we need to effectively a position of a camera in space. We represent
the camera by two CGA elements:

• the conformal point F representing the camera center (focus),
• the point pair P ∧ Q defining the camera image plane π,

as illustrated in Fig. 1.

We obtain the classical camera description by straightforward compu-
tations as

• focal distance f = −2
√

F · P ,
• camera axis (F − P ) ∧ e∞,
• camera plane π = P ∧ Q ∧ (F ∧ P ∧ e∞)∗.

Note that in our settings the line P ∧ Q ∧ e∞ is always orthogonal to
the line F ∧ P ∧ e∞, i.e.

(F ∧ P ∧ e∞) · (P ∧ Q ∧ e∞) = 0.

Given an initial position F0, P0, Q0, the actual position in the space is
obtained by an Euclidean transformation which in CGA is given by a conju-
gation with a motor M , see Fig. 1 again. The advantage of CGA is that we
can transform whole geometric objects, i.e. any geometric entity constructed
from F, P,Q. For instance, the actual position of the camera center is

F = MF0M̃, (1)

and the actual position of the image plane is given by

π = Mπ0M̃. (2)
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Figure 2. A line projected to two cameras

In the same way, one can obtain also the actual direction of the camera
M((F0 − P0) ∧ e∞)M̃ . For a concrete application one only needs to specify
the initial position and the motor M .

Remark 3.1. In PGA, the camera position is also represented by two objects;
the projective point F representing the camera center and line P ∧ Q which
lies in camera plane such that the line P ∧ Q is orthogonal to line F ∧ P , i.e.
(F ∧ P ) · (P ∧ Q) = 0. Similarly to the formula in CGA, the camera image
plane is obtained as π = P ∧ Q ∧ (F ∧ P )∗.

4. Pose Estimation

Let us consider two cameras in a general position, given by two arbitrary
motors M1, M2, and a line L which projects to conjugate lines L1, L2 in the
two camera image planes π1, π2, see Fig. 2.

We show how easy it is, using CGA, to find the images L1 and L2 of L or
to reconstruct L from those images. Indeed, given a line L in 3D, its image on
a camera plane is given as the intersection of this plane with a plane spanned
by L and the corresponding camera focus. In terms of the wedge product and
the meet we thus have

Lk = (L ∧ Fk) ∨ πk, k = 1, 2, (3)

where the current positions Fk and πk are computed from their initial position
by (1) and (2), respectively, with M being either M1 or M2. Concerning the
inverse problem, the real line is reconstructed from the given images as the
intersection of the plane spanned by L1 and F1 with the plane spanned by
L2 and F2. Thus its representation in CGA reads

L = (F1 ∧ L1) ∨ (F2 ∧ L2). (4)
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Let us emphasize that formulas (3), (4) are valid for cameras in general posi-
tions based on arbitrary motors M1 and M2 and that the computations above
are valid for both conformal geometric algebra and also for the projective geo-
metric algebra.

Note that the conjugate lines L1 and L2 are considered as lines in 3D
space. For applications we would rather need to express them in the 2D image
plane. Therefore, we define maps ιk : R2 → R3 which transform the xy-plane
into πk, k = 1, 2. Then a formula for Lk in the image plane geometric algebra
is given by

L2D
k := δke1 ∧ e2 ∧ e∞ + cos(αk)e1 ∧ e∞ ∧ e0 + sin(αk)e2 ∧ e∞ ∧ e0,

for a suitable planar Plücker coordinates based on distance from the origin
δk and the slope tan(αk). These can be extracted from Lk as follows

�Lk = (e0 ∧ e∞) · L2D
k ,

(δk)∗ = (L2D
k − �Lk ∧ e0 ∧ e∞) ∧ e3 ∧ e0,

where �Lk ≡ cos(αk)e1 + sin(αk)e2. Indeed, compute (e0 ∧ e∞) · L2D
k as

〈(e0 ∧ e∞) · L2D
k 〉3−2

= 〈δk(e0 ∧ e∞)(e1 ∧ e2 ∧ e∞) + cos(αk)(e0 ∧ e∞)(e1 ∧ e∞ ∧ e0)

+ sin(αk)(e0 ∧ e∞)(e2 ∧ e∞ ∧ e0)〉1
= 〈δk(−1 − e0e∞)(e1e2e∞) + cos(αk)(−1 − e0e∞)(e1(1 + e∞e0))

+ sin(αk)(−1 − e0e∞)(e2(1 + e∞e0))〉1
= 〈−δk(e1e2e∞) + cos(αk)(−e1(1 + e∞e0) − e0e∞e1)

+ sin(αk)(−e2(1 + e∞e0) − e0e∞e2)〉1
= 〈−δk(e1e2e∞) + cos(αk)(−e1 − e1e∞e0 − e0e∞e1)

+ sin(αk)(−e2 − e2e∞e0 − e0e∞e2)〉1
= − cos(αk)e1 − sin(αk)e2.

In the very similar way compute (L2D
k − �Lk ∧ e0 ∧ e∞) as

δke1 ∧ e2 ∧ e∞ + cos(αk)e1 ∧ e∞ ∧ e0 + sin(αk)e2 ∧ e∞ ∧ e0 + (cos(αk)e1

+sin(αk)e2) ∧ e0 ∧ e∞
= δke1 ∧ e2 ∧ e∞

and finally,

(L2D
k − �Lk ∧ e0 ∧ e∞) ∧ e3 ∧ e0 = δke1 ∧ e2 ∧ e∞ ∧ e3 ∧ e0 = (δk)∗.

Let us remark that in the inverse problem, we do not need to read off the
Plücker coordinates directly. If we read off two points [x1

k, y1
k], [x2

k, y2
k] of the

line Lk instead, then we get

L2D
k = (x1

ky2
k − x2

ky1
k)e1 ∧ e2 ∧ e∞ + (x2

k − x1
k)e1 ∧ e∞ ∧ e0

+(y2
k − y1

k)e2 ∧ e∞ ∧ e0.

Remark 4.1. In PGA, the geometric elements F1, F2, L1, L2, L, π1, π2 are rep-
resented differently (in a 4D space) but the fundamental formulae (3) and
(4) have exactly the same form.

74



Vol. 27 (2017) Binocular Computer Vision 1953

5. Models and the Problem

We will demonstrate our setup on two models; each of them is composed of
two pinhole cameras but their relative position and motion freedom is differ-
ent. The problem is to adapt the given system by changing free parameters
(angles of rotations) so that the image of a given line in one camera or in
both cameras (if possible) is in a specific position. Concretely, in the examples
below we want to identify the projection of the line with the x-axis of the
image coordinates. This problem in general is solved completely by formulas
(3) and (4). An explicit solution is found by the following algorithm based on
these formulas. We consider that the configuration of a given system depends
on a set of parameters φ = (φ1, φ2, . . .) and our aim is to find φ such that
the image of a line in the k-th camera coincides with a given reference line
Lref

k (x-axis in the examples below). Note that the algorithm has two parts.
In the first one, we reconstruct the space line L from its images captured by
the camera system in a configuration φ0. The second part computes images
of L in a general configuration φ.

• identify the system by specifying two motors M1,M2 and the map ιk
and their dependance on parameters φ,

• input two 2D images L2D
1 , L2D

2 of a real line L captured on cameras in
a positions described by parameters φ0,

• compute Lk(φ0) = ιk(L2D
k ) for k = 1, 2,

• compute positions of camera centers for k = 1, 2 according to (1)

Fk(φ0) = Mk(φ0)F0M̃k(φ0),

• compute the real line L according to (4)

L = (F1(φ
0) ∧ L1(φ

0)) ∨ (F2(φ
0) ∧ L2(φ

0))

• compute camera centers and image planes in a position φ according to
(1) and (2)

Fk(φ) = Mk(φ)F0M̃k(φ),

πk(φ) = Mk(φ)π0M̃k(φ),

• compute the images the line L in cameras in a position φ according to
(3)

Lk(φ) = (L ∧ Fk(φ)) ∨ πk(φ),

• solve equation L2D
k (φ) = Lref

k for φ.

For both models we consider that the camera initial position is in the
Cartesian frame such that

F0 = c(0, 0, 0) = e0,

P0 = c(0, 0, f) = fe3 +
1

2
f2e∞ + e0,

Q0 = c(0, 1, f) = e2 + fe3 +
1

2
(f2 + 1)e∞ + e0.
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Figure 3. Scheme of the first model

Consequently, the initial camera axis F0 ∧ P0 ∧ e∞ = fe3 ∧ e∞ ∧ e0 is the
z-axis and the initial image plane π0 = P0 ∧Q0 ∧ (F0 ∧P0 ∧ e∞)∗ is given by

π0 = −1

2
f2e1 ∧ e2 ∧ e3 ∧ e∞ +

1

2
fe1 ∧ e2 ∧ e∞ ∧ e0.

The map ιk : R2 → R3 maps xy-plane to π0 (the translation about the focal
distance f in the z-direction) and then to πk (transformation Mk) and thus
is given by conjugation by the motor Mk exp(−1/2fe3 ∧ e∞), k = 1, 2, i.e.

ιk(L2D
k ) = Mk

(
1 − f

2
e3 ∧ e∞

)
L2D

k

(
1 +

f

2
e3 ∧ e∞

)
M̃k.

Since it is an orthogonal transformation in CGA, its inverse is given simply
by a conjugation by the reversed motor. Now we have all what we need to
solve the problem in CGA, except the specification of M1 and M2.

5.1. First Model

Let us consider a system of two cameras sharing one rotation axis such that
the first of them can rotate also around a perpendicular axis. A precise scheme
with an attached coordinate frame is displayed in Fig. 3.

The formulae for the motors can be read off the figure directly. Namely,
we have

M1 = R2R1T1,

M2 = R1,
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where the translation T1 and the rotations R1, R2 are given by

T1 = 1 − 1

2
l1e2 ∧ e∞,

R1 = cos

(
φ1

2

)
+ sin

(
φ1

2

)
(e3 ∧ e1),

R2 = cos

(
φ2

2

)
+ sin

(
φ2

2

)
�2

and where the axis �2 of the second rotation is

�2 = R1T1(e2 ∧ e3)T̃1R̃1.

Thus the appropriate motors are determined and a solution can be found
according to the algorithm given above. In this particular example, it is
possible to find a complete solution in symbolic form using CLIFFORD [1].
Namely, given Plücker coordinates (m1,m2,m3, d1, d2, d3) of the world line
L, its images in cameras are

�L1 =
(
m2 cos φ2 − (m1 − l1d3) sin φ1 sinφ2 + (m3 + l1d1) cos φ1 sin φ2

)
e1

+
(
(m1 − l1d3) cos φ1 + (m3 + l1d1) sin φ1

)
e2

δ1 = f(m1 − l1d3) sin φ1 cos φ2 − f(m3 + l1d1) cos φ1 cos φ2

�L2 = m2e1 + (m1 cos φ1 + m3 cos φ1)e2

δ2 = fm1 sin φ1 − fm3 cos φ1

On the other hand, given Plücker coordinates (x1, y1, δ1) (x2, y2, δ2) of L1

and L2, respectively, the real line L is reconstructed as

m1 = l1x2y1f
2 sin φ1 cos φ2 − l1x2δ2f cos φ1 cos φ2 + l1y1δ1f sinφ1 sinφ2

−l1δ1δ2 cos φ1 sin φ2,

m2 = l1x1x2f
2 cos φ2 + l1x1δ1f sin φ2,

m3 = l1x2y1f
2 cos φ1 cos φ2 + l1x2δ2f sin φ1 cos φ2 + l1y1δ1f cos φ1 sinφ2

+l1δ1δ2 sinφ1 sin φ2,

d1 = −y2δ1f sinφ1 sin φ2 + x2y1f
2 sinφ1 cos φ2,

−(δ1δ2 + x2y1f
2) cos φ1 sin φ2 + (x1δ1f − x2δ2f) cos φ1 cos φ2,

d2 = −y2δ2f − x2y1f
2 sin φ2 + y1δ1f cos φ2,

d3 = (δ1δ2 + x1x2) sin φ1 sinφ2 + (x1δ1f − x2δ2f) sin φ1 cos φ2,

−y1δ1f cos φ1 sin φ2 − x2y1f
2 cos φ1 cos φ2.

Now we can solve our main equation

L2D
k (φ) = Lref

k

for φ explicitly. To present a set of results we choose the kinematic parameters
�1 = 1 and f = 0.045. Furthermore, we assume that the initial camera
positions are determined by the angles φ0

1 = 0 and φ0
2 = −π

8 . If the Plücker
coordinates coincide with this setting we conclude that the visualized line
is placed in front of the system. We set the angle to be π

10 , π
20 and π

100 ,
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Table 2. The results where the image of a line in the camera
coincides with x-axis

φ1,2 d1,2 First model: r1 r2 Second model: r1 r2

π/10 0.1 −3.01 1.56 0.14 4.31
0.01 −2.64 0.68 0.95 0.38

π/20 0.1 −3.08 1.55 0.07 1.15
0.01 −2.88 0.63 0.61 0.27

π/100 0.1 −3.13 1.54 0.01 1.15
0.01 −3.09 0.61 0.14 0.22

Figure 4. Scheme of the second model

respectively, and the appropriate distance to be 0.1 and 0.01. The numeric
results are shown in columns three to four of Table 2.

The image within camera number one can be placed into Plücker plane
coordinates (1, 0, 0) by a combination of both rotations. The larger the object
distance, the rotation changes become less important. Clearly, the data in
the above table correspond to the fact that if d1,2 is decreased, the visualized
object is becomes more remote.

5.2. Second Model

Second model, see Fig. 4, is also based on two revolute joints, represented by
rotations R1, R2 but the cameras do not lie on one axis.

In this case, the system can be described by the following set of motors.

M1 = R1T1,

M2 = R2R1T2,
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where the translations T1, T2 and the rotations R1, R2 are given by

T1 = 1 − 1

2
l1e2 ∧ e∞,

T2 = 1 − 1

2
l2e1 ∧ e∞,

R1 = cos

(
φ1

2

)
+ sin

(
φ1

2

)
(e3 ∧ e1),

R2 = cos

(
φ2

2

)
+ sin

(
φ2

2

)
�2

and where the axis �2 of the second rotation is

�2 = R1(e2 ∧ e3)R̃1.

Finally, we present an example given by the kinematic setting �1 =
1, �2 = 0.5 and f = 0.045. The initial configuration is given by φ0

1 = φ0
2 = 0

and the Plücker coordinates are the same as in the first model. The numeric
results are shown in columns five to six of Table 2. The data in the above table
are in agreement with the fact that decreasing d1,2 correlates with increasing
the distance of the visualized object.

6. Human-Like Vision

The models described above can be solved alternatively in PGA since all
objects which occurred were flat, i.e. points, lines and planes, see Remarks
3.1 and 4.1. However, the CGA approach allows generalizations human-like
vision. By this expression, we mean a binocular vision as above but with
cameras which do not project on plane but rather on a sphere. Thus one case
is similar to human vision but the relative position of “eyes” can vary and
may depend on several parameters. For instance, the “eyes” can rotate as in
the models above. In CGA, sphere is in principle the same object as plane
and thus we can use the theory from Sects. 3, 4 and also the algorithm from
Sect. 5 with minor changes. Instead of a camera plane π, we have a camera
sphere σ but the transformation is the same as in (2), i.e.

σ = Mσ0M̃.

The role of F is the same and P defines the direction of an “eye”. Instead of Q
one needs more data to recover the whole image sphere σ. The basic formulas
(3) and (4) are also still valid but as the images of L we get conjugate circles
c1, c2 instead of conjugate lines L1, L2, i.e.

ck = (L ∧ Fk) ∨ σk, k = 1, 2,

L = (F1 ∧ c1) ∨ (F2 ∧ c2).

Note that the images c1, c2, even in their initial position, are 3D objects.
A possibility for how to get an equivalent 2D information is to take their
stereographic projections, an operation which is easy with CGA. Using CGA
one can also easily recover classical notions as the point of fixation or the
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horopter. Of course, the fixation does not need to exist in our general setting.
But if it exists, it is obviously given by

Fix = (F1 ∧ P1 ∧ e∞) ∨ (F2 ∧ P2 ∧ e∞)

and the horopter circle reads

Hor = F1 ∧ F2 ∧ Fix.

7. Conclusion

The motivation for this paper is given by a specific engineering application
of binocular vision. More precisely, we consider two cameras attached to a
mechanic manipulator on different axes. The whole construction provides
several degrees of freedom. The initial setting reads the position of both
cameras and the reference line projection of the observed object. The goal is
to identify the reference line and center it on an arbitrary camera. Note that
without the reference line is exact 3D position it is not possible to solve the
problem, although this was not part of the setting.

We solved this problem for arbitrary manipulator kinematics by means
of CGA objects and transformations. In Sect. 5 we introduced the algo-
rithm for a particular kinematics choice and derived the explicit equation

L2D
k (φ) = Lref

k , the solution of which is the desired configuration. We solved
the problem for two specific configurations and included the presentation of
several outputs. The final of the first example (Sect. 5.1) are presented in the
form without the CGA symbolic which we find suitable for. Conformal alge-
bra thus provides an effective system description. Its object oriented nature
then allows to solve several problems simultaneously. The last step demands
to solve the system of non linear equations. This should be done with spe-
cial software that accepts the classical form of equations. Note that even
the system transformation into the explicit form is accomplished with CGA
manipulations.

Within the process we needed to describe the inner configuration of
a pin-hole camera, which was done in Sect. 3. Furthermore, some unknown
identities transforming the CGA line description into the Plücker coordinates
were introduced, see Sect. 4.
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Abstract. We present a particular geometric algebra together with such
an embedding of two–dimensional Euclidean space that the algebra ele-
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1. Introduction

The contribution of geometric algebras in various applications is well known,
see e.g. [4,6,7]. The fundamental idea is the algebraic representation of both
geometric objects and their Euclidean transformations as single Clifford alge-
bra elements where the actual transformation is realized by means of the alge-
bra operation, see e.g. [5] for computational concepts. Let us recall the list of
essential geometric algebras suitable for various Euclidean plane representa-
tions. By Euclidean plane representation we mean an embedding of R2 into
Rp,q generating a geometric algebra Gp,q which is equivariant with respect
to Euclidean transformations. The simplest case of the plane representation
is G2 but it covers the rotations only, not translations. Its natural extension
G3,1 contains not only Euclidean transformations but even conformal trans-
formations (i.e. similarities) and yet the appropriate Clifford algebra remains
non-degenerate in spite of the case of e.g. G2,0,1. Another contribution of
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G3,1 lies in the linearization of Euclidean metric and efficient computations
with spheres. Our aim is to find and describe a suitable representation of
the Euclidean plane that provides the same efficiency for calculations with
arbitrary conic sections. We continue in C. Perwass’s concept, [9], precisely
that of G5,3 and completes its description by the full classification of the ele-
ments corresponding to the appropriate conic sections with full advantages
of geometric algebra approach, e.g. presence of Euclidean transformations
as algebra elements with natural and well defined action. To learn about
different approaches see Sect. 7.

Thus, in Sect. 2 we define the Geometric Algebra for Conics (GAC)
as Clifford algebra G5,3 together with the particular embedding of two-
dimensional Euclidean space. Consequently, we provide the inner product
representations of all geometric entities available in GAC and show that these
correspond to all possible conic sections and their intersections (Sect. 3), and
their outer product representations together with a precise discussion of dual-
ity (Sect. 4). In Sect. 5 we describe the essential GAC transformations. We
stress that, apart from translations elaborated in [9], we describe rotations
and scaling and thus we receive a representation of similarities in the plane
which enables efficient conic sections manipulations. In Sect. 6 we show the
Maple implementation of GAC and test the functionality on a list of exam-
ples.

2. Geometric Algebra for Conics

The idea of C. Perwass is to generalize the concept of (two-dimensional)
conformal geometric algebra G3,1. In the usual basis n̄, e1, e2, n, embedding
of a plane in G3,1 is given by

(x, y) �→ n̄ + xe1 + ye2 +
1

2
(x2 + y2)n.

Let us recall that n̄, n are null-vectors which play the role of the origin and
infinity, respectively, [9]. Hence the objects representable by vectors in G3,1

are linear combinations of 1, x, y, x2 + y2, i.e. circles, lines, point pairs and
points. If we want to cover also general conics, we need to add two terms:
1
2 (x2 − y2) and xy. It turns out that we need two new infinities for that and
also their two corresponding counterparts (Witt pairs), [8]. Thus the resulting
dimension of the space generating the appropriate geometric algebra is eight.

Let R5,3 denote the eight-dimensional real coordinate space R8 equipped
with a non-degenerate symmetric bilinear form of signature (5, 3). The form
defines Clifford algebra G5,3 and this is the Geometric Algebra for Conics in
the algebraic sense. To add the geometric meaning we have to describe an
embedding of the plane into R5,3. To do so, let us choose a basis of R5,3 such
that the corresponding bilinear form is

B =

⎛
⎝

0 0 −13×3

0 12×2 0
−13×3 0 0

⎞
⎠ , (1)
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where 12×2 and 13×3 denote unit matrices of the displayed size. Analogously
to CGA and to the notation in [9], we denote the corresponding basis elements
as follows

n̄+, n̄−, n̄×, e1, e2, n+, n−, n×.

The form of (1) suggests that the basis elements e1, e2 will play the usual
role of standard basis of the plane while the null vectors n̄, n will represent
either the origin or the infinity. Note that there are three orthogonal ‘origins’
n̄ and three corresponding orthogonal ‘infinities’ n. In terms of this basis, a
point of the plane x ∈ R2 defined by x = xe1 + ye2 is embedded using the
operator C : R2 → C ⊂ R5,3, which is defined by

C(x, y) = n̄+ + xe1 + ye2 +
1

2
(x2 + y2)n+ +

1

2
(x2 − y2)n− + xyn×. (2)

The image C of the plane in R5,3 is an analogue of the conformal cone. In fact,
it is a two-dimensional real projective variety determined by five homogenous
polynomials of degree one and two.

Definition 2.1. Geometric Algebra for Conics (GAC) is the Clifford algebra
G5,3 together with the embedding R2 → R5,3 given by (2) in the basis deter-
mined by matrix (1).

Remark 2.2. The definition of GAC is analogous to the definition proposed by
Perwass in [9]. The relation between the corresponding ‘origins’ and ‘infinities’
is n̄1,2 = 1

2 (n̄+ ± n̄−) and n1,2 = n+ ± n−, respectively.

Note that, up to the last two terms, the embedding (2) is the embedding
of the plane into the two-dimensional conformal geometric algebra G3,1. In
particular, it is evident that the scalar product of two embedded points is
the same as in G3,1, i.e. for two points x,y ∈ R2 we have

C(x) · C(y) = −1

2
‖x − y‖2, (3)

where the standard Euclidean norm is considered on the right hand side. In
particular, each point is represented by a null vector.

Remark 2.3. The geometric algebra G3,1 is included in GAC. In terms of the
usual basis, the inclusion is given by the identity on e1, e2 and by n̄ → n̄+

and n → n+ on the null vectors. Also the two-dimensional version of the
quadric geometric algebra (QGA) proposed in [10] is included in GAC. Here
the inclusion is given by e0 → n̄+, e∞x → n+ + n− and e∞y → n+ − n−.

Let us recall that the invertible algebra elements are called versors and
they form a group, the Clifford group, and that conjugations with versors
give transformations intrinsic to the algebra. Namely, if the conjugation with
a G5,3 versor R preserves the ‘cone’ C, i.e. for each x ∈ R2 there exists such
a point x̄ ∈ R2 that

RC(x)R̃ = C(x̄), (4)

where R̃ is the reverse of R, then x → x̄ induces a transformation R2 →
R2 which is intrinsic to GAC. We will show in Sect. 5 that the conformal
transformations are intrinsic to GAC.
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Let us also recall the outer (wedge) product, inner product and the
duality A∗ = AI−1. Henceforth we use the usual definitions as in [9]. Note
that in GAC the pseudoscalar is given by

I = n̄+n̄−n̄×e1e2n+n−n×.

3. Inner Product Representation Of Conics

Let us recall the definition of inner product representation. An element
AI ∈ G5,3 is the inner product representation of a geometric entity A in
the plane if and only if A = {x ∈ R2 : C(x) · AI = 0}. Hence, given a fixed
geometric algebra, the representable objects can be found by examining the
inner product of a vector and an embedded point. A general vector in the
conic space R5,3 in terms of our basis is of the form

v = v̄+n̄+ + v̄−n̄− + v̄×n̄× + v1e1 + v2e2 + v+n+ + v−n− + v×n×

and its inner product with an embedded point is then given by

C(x, y) · v = −1

2
(v̄+ + v̄−)x2 − v̄×xy − 1

2
(v̄+ − v̄−)y2 + v1x + v2y − v+,

i.e. by a general polynomial of degree two. Thus the objects representable
in GAC are exactly conics. We also see that the two-dimensional subspace
generated by infinities n−, n× is orthogonal to all embedded points. Hence
a conic is uniquely represented (in homogeneous sense) by a vector in R5,3

modulo this subspace. This gives the desired dimension six. In other words,
the inner representation of a conic in GAC can be defined as a vector

QI = v̄+n̄+ + v̄−n̄− + v̄×n̄× + v1e1 + v2e2 + v+n+. (5)

The classification of conics is well known. The non-degenerate conics
are of three types, the ellipse, hyperbola, and parabola. Now, we present the
vector form (5) appropriate to each conic type in the simplest case, i.e. an
axes-aligned conic with its centre in the origin. The results may be verified
easily by multiplying each vector by an embedded point which means the
application of (1) and (2).

Example 3.1. In the canonical coordinate system, ellipse EI and hyperbola
HI with semi-axis a, b and parabola PI with semi-latis rectum p are repre-
sented by the following GAC vectors

EI = (a2 + b2)n̄+ + (a2 − b2)n̄− − a2b2n+, (6)

HI = (a2 + b2)n̄+ + (a2 − b2)n̄− + a2b2n+, (7)

PI = n̄+ + n̄− + pe2. (8)

The following propositions specify the form of vector (5) for all types of
conics in a general position depending on their internal parameters and the
position and orientation in the plane.
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Proposition 3.2. An ellipse E with the semi-axes a, b centred in (u, v) ∈ R2

rotated by angle θ is in the GAC inner representation given by

EI = n̄+ − (α cos 2θ)n̄− − (α sin 2θ)n̄×
+(u + uα cos 2θ − vα sin 2θ)e1 + (v + vα cos 2θ − uα sin 2θ)e2

+ 1
2

(
u2 + v2 − β − (u2 − v2)α cos 2θ − 2uvα sin 2θ

)
n+, (9)

where

α =
a2 − b2

a2 + b2
, β =

2a2b2

a2 + b2
.

A hyperbola H with the semi-axes a, b centred in (u, v) ∈ R2 rotated by angle
θ is in the GAC inner representation given by the same expression but with

α =
a2 + b2

a2 − b2
, β =

−2a2b2

a2 − b2
.

Proof. A direct computation gives

C(x, y) · EI = − 1
2 (1 − α cos 2θ)x2 + α sin 2θxy − 1

2 (1 + α cos 2θ)y2

+ (u + uα cos 2θ − vα sin 2θ)x + (v + vα cos 2θ − uα sin 2θ)y

− 1
2

(
u2 + v2 − β − (u2 − v2)α cos 2θ − 2uvα sin 2θ

)

= − a2b2

a2 + b2

(
x̄2

a2
+

ȳ2

b2
− 1

)
,

where x̄ = (x − u) cos θ + (y − v) sin θ, ȳ = −(x − u) sin θ + (y − v) cos θ.
The last equality follows from the double-angle formulae for trigonometric
functions. Hence (x̄, ȳ) are the canonical coordinates for the ellipse and these
coordinates differ from the original ones by translation (u, v) and rotation by
θ. The result for hyperbolas follows immediately since a hyperbola with semi
axes a, b can be considered as an ellipse with a semi axis a and an imaginary
semi axis b. �

Proposition 3.3. A parabola P with the semi-latus rectum p centred in (u, v) ∈
R2 rotated by angle θ is in the GAC inner representation given by

PI = n̄+ + cos 2θn̄− + sin 2θn̄× (10)

+(u + u cos 2θ + v sin 2θ − 2p sin θ)e1

+(v − v cos 2θ + u sin 2θ + 2p cos θ)e2

+ 1
2

(
u2 + v2 + (u2 − v2) cos 2θ + 2uv sin 2θ − 4pu sin θ + 4pv cos θ

)
n+

Proof. A direct computation gives

C(x, y) · PI = − 1
2 (1 + cos 2θ)x2 − sin 2θxy − 1

2 (1 − cos 2θ)y2

+ (u + u cos 2θ + v sin 2θ − 2p sin θ)x

+ (v − v cos 2θ + u sin 2θ + 2p cos θ)y

− 1
2

(
u2+v2+(u2−v2) cos 2θ+2uv sin 2θ−4pu sin θ+4pv cos θ

)

=2pȳ − x̄2,

where x̄ = (x − u) cos θ + (y − v) sin θ, ȳ = −(x − u) sin θ + (y − v) cos θ. �
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Even though a circle is a special ellipse and thus its GAC representation
is obtained from (9) for α = 0, β = ρ2, we give the GAC inner product
representations of G3,1 elements as a separate proposition.

Proposition 3.4. The GAC inner representations of G3,1 objects are given by
the usual formulas. A circle C centred in (p1, p2) with radius ρ is given by

CI = n̄+ + p1e1 + p2e2 + 1
2 (p2

1 + p2
2)n+ − 1

2ρ2n+

and a line L with unite normal (n1, n2) and a shift d from the origin is given
by

LI = n1e1 + n2e2 + dn+.

Proof. One can directly compute again the inner product of CI and LI with
C(x, y) to prove the proposition. However, this is not necessary since by
Remark 2.3 the algebra G3,1 is included in GAC and thus all G3,1 elements
have the same form in GAC up to the subscript +. �

We complete the list of conic types by providing the algebra elements
that represent two lines that intersect and two lines that do not intersect.
Formulas for these degenerate conics can be easily derived from the non-
degenerate ones by means of certain limits.

Proposition 3.5. GAC inner representation of two parallel lines is given by
(9) with coefficients α = −1, β = 2a2, where 2a is the distance between
the lines. GAC inner representation of two intersecting lines, which are not

perpendicular, is given by (9) with coefficients α = 1+k2

1−k2 , β = 0, where k is
the line derivation.

Proof. Parallel lines are obtained from an ellipse by the limit b → ∞. The
intersecting lines are obtained from a hyperbola by setting b = ka and then
by taking the limit a → 0. �

Remark 3.6. Two perpendicular lines cannot be expressed in the form (9)
since the coefficient of n̄+ has to be zero. For this particular case we get the
GAC inner representation of the form

LL⊥
I = − (α cos 2θ)n̄− − (sin 2θ)n̄× + (u cos 2θ − v sin 2θ)e1

+ (v cos 2θ − u sin 2θ)e2 − 1
2

(
(u2 − v2) cos 2θ + 2uv sin 2θ

)
n+.

It is well known that the type of a given unknown conic can be read off
its matrix representation, which in our case for a conic given by vector (5)
reads

Q =

⎛
⎜⎝

− 1
2 (v̄+ + v̄−) − 1

2 v̄× 1
2v1

− 1
2 v̄× − 1

2 (v̄+ − v̄−) 1
2v2

1
2v1 1

2v2 −v+

⎞
⎟⎠ . (11)
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The entries of (11) can be easily computed by means of the inner product:

q11 = QI · 1
2 (n+ + n−),

q22 = QI · 1
2 (n+ − n−),

q33 = QI · n̄+,

q12 = q21 = QI · 1
2n×,

q13 = q31 = QI · 1
2e1,

q23 = q32 = QI · 1
2e2.

It is also well known how to determine the internal parameters of an unknown
conic and its position and the orientation in the plane from the matrix (11).
Hence all this can be determined from the GAC vector QI by means of the
inner product.

The list of conics is complete though the list of the GAC objects is yet
more extensive. More precisely, the objects that are representable in GAC
are conics and their intersections, only. Intersection of two conics, hence the
next basic objects, are point quadruplets. The properties of inner and outer
product imply that intersections are given by the wedge product of inner
representations. Indeed, given the inner representation of two different conics
Q1, Q2 in GAC, we have

C(x, y) · (Q1
I ∧ Q2

I) = (C(x, y) · Q1
I)Q

2
I − (C(x, y) · Q2

I)Q
1
I .

The vectors Q1
I , Q

2
I are linearly independent since we consider different conics

and hence the above formula equals to zero if and only if C(x, y) ·Q1
I = 0 and

C(x, y) · Q2
I = 0. Hence the inner product representation of the intersection

of two conics is given by

(Q1 ∩ Q2)I = Q1
I ∧ Q2

I . (12)

4. Outer Product Representation

Let us recall that the outer product representation is given as a null space of
the wedge product. The duality between the outer and inner product implies

{x ∈ R2 : C(x) · AI = 0} = {x ∈ R2 : C(x) ∧ A∗
I = 0}.

Hence A∗
I is usually considered as the outer product representation of the

entity A. However, A∗
I is always a multivector of the form AO ∧ n̄− ∧ n̄×

in GAC, where AO is an element of grade five containing basis elements
of the six-dimensional subspace (5) only. Thus it is convenient to consider
rather AO as the outer representation of A. In other words, AO is the outer
representation of an entity A if and only if

A = {x ∈ R2 : C(x) ∧ AO ∧ n̄− ∧ n̄× = 0}.

The duality between the outer and inner product representation of a conic
then reads

AO = (AI ∧ n− ∧ n×)∗, (13)

AI = (AO ∧ n̄− ∧ n̄×)∗. (14)
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Remark 4.1. Since GAC has 28 basis elements, the time load for the com-
putation of the dual algebra element is enormous. For implementations it
is more convenient to compute the dual representation using left contrac-
tion, i.e. inner product in this particular case. Namely, we define two new
‘pseudoscalars’

IOI = n̄+n̄−n̄×e1e2n+, (15)

IIO = n̄+e1e2n+n−n× (16)

and the duality between representations is given by the inner product with
these elements, AO = AI ·IIO and AI = AO ·IOI , depending on the direction.

This definition of the outer product representation allows a simple con-
struction of conic sections by means of the outer product of points that lie
on the conic section.

Proposition 4.2. The outer product representation of a conic Q given by five
points with GAC representatives P1, . . . , P5 is

QO = P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5. (17)

An axes-aligned conic Qal given by four points with GAC representatives
P1, . . . , P4 is

Qal
O = P1 ∧ P2 ∧ P3 ∧ P4 ∧ n×. (18)

A circle C given by three points with GAC representatives P1, P2, P3 is

CO = P1 ∧ P2 ∧ P3 ∧ n− ∧ n×. (19)

A line L given by two points with GAC representatives P1, P2 is

LO = P1 ∧ P2 ∧ n+ ∧ n− ∧ n×. (20)

Proof. Let us start with a general conic. We prove an equivalent statement
that (QO ∧ n̄− ∧ n̄×)∗ is the inner representation of the conic Q defined by
points P1, . . . , P5. The duality between the inner and outer product implies

n̄−,× · (QO ∧ n̄− ∧ n̄×)∗ = (n̄−,× ∧ QO ∧ n̄− ∧ n̄×)∗ = 0

and thus (QO ∧ n̄− ∧ n̄×)∗ is a vector which contains neither n− nor n×, i.e.
it is an inner representation of a conic, see (5). Moreover, we have

Pi · (QO ∧ n̄− ∧ n̄×)∗ = (Pi ∧ QO ∧ n̄− ∧ n̄×)∗ = 0

for each i = 1, . . . , 5. In other words, all points Pi lie on Q and thus Q is
the unique conic spanned by them. A similar argumentation holds for the
axes-aligned conic Qal, for the circle C, and also for the line L. Namely,
(Qal

O ∧ n̄− ∧ n̄×)∗ is the inner representation of a conic with a zero coefficient
at n̄×. Hence its inner product with an embedded point C(x, y) does not
contain the mixed term xy and consequently the conic is aligned to the axes.
The dual to CO is a vector of type (5) which contains neither n̄× nor n̄−,
therefore it represents a circle. Similarly, LO is a vector of type (5) which
contains none of n̄×, n̄−, n̄+, therefore it represents a line. Let us remark
that the form of outer representations of circles and lines can be also read off
Remark 2.3. �
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Remark 4.3. The above proposition also explains the choice of null vectors
n+, n−, n× that represent ‘infinities’. An axes-aligned conic is a conic con-
taining one infinity, a circle is a conic containing two infinities and a line is a
conic containing all three infinities.

Remark 4.4. The dimension zero GAC objects are point quadruplets and
they are given by wedge of the corresponding GAC points.

5. Euclidean Transformations and Scaling

The main advantage of GAC compared to models like G6 or QGA is that it is
fully operational in the sense that it allows all Euclidean transformations, i.e.
rotations and translations. But not just that, it also allows scaling in the sense
of (4). Hence, like in the case of CGA (or G3,1), one obtains all conformal
transformations. The following propositions specify the form of GAC versor
for rotation (rotor), translation (translator), and scaling (scalor).

Proposition 5.1. The rotor for a rotation around the origin by the angle ϕ is
given by R = R+(R1 ∧ R2), where

R+ = cos(ϕ
2 ) + sin(ϕ

2 )e1 ∧ e2, (21)

R1 = cos(ϕ) + sin(ϕ)n̄× ∧ n−, (22)

R2 = cos(ϕ) − sin(ϕ)n̄− ∧ n×. (23)

Proof. It is easy to see that R+, R−, R× are invertible elements of unite
length. Indeed, the reverse is obtained by changing the sign at the bivector
part, and such an element is the inverse at the same time. Hence R is also a
unit versor. Then observe that R+ acts non-trivially only on the G3,1 part of
the embedding while the action of R1 ∧ R2 on this part is trivial. We know
that R+ acts correctly since it has the form of the usual G3,1 rotor and hence
it is sufficient to show that R1 ∧R2 acts on the n− and n× part as a rotation.
We compute

R1∧R2 =cos2 θ+sin θ cos θ(n̄× ∧ n− − n̄− ∧ n×)+sin2 θ(n̄− ∧ n̄× ∧ n× ∧ n−)

and then

(R1 ∧ R2)n−(R̃2 ∧ R̃1) = (cos2 θ − sin2 θ)n− − (2 sin θ cos θ)n×,

(R1 ∧ R2)n×(R̃2 ∧ R̃1) = (2 sin θ cos θ)n− + (cos2 θ − sin2 θ)n×.

Hence on the n− and n× part of C(x, y), see (2), we get

(R1 ∧ R2)(
1
2 (x2 − y2)n− + xyn×)(R̃2 ∧ R̃1)

= (1
2 (x2 − y2)(cos2 θ − sin2 θ) + 2xy sin θ cos θ)n−

+ (xy(cos2 θ − sin2 θ) − (x2 − y2) sin θ cos θ)n×

= 1
2 (x̄2 − ȳ2)n− + x̄ȳn×,

where x̄ = x cos θ + y sin θ, ȳ = −x sin θ + y cos θ are the rotated coordinates.
Putting all together we have
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R+(R1 ∧ R2)C(x, y)(R̃2 ∧ R̃1)R̃+ = C(x̄, ȳ).

�

Proposition 5.2. The translator is given by T = T+T−T×, where

T+ = 1 − 1
2ue1 ∧ n+ (24)

T− = 1 − 1
2ue1 ∧ n− + 1

4u2n+ ∧ n− (25)

T× = 1 − 1
2ue2 ∧ n× (26)

for a translation in the direction e1 around u. Similarly, for a translation in
the direction e2 around v one has

T+ = 1 − 1
2ve2 ∧ n+ (27)

T− = 1 + 1
2ve2 ∧ n− − 1

4v2n+ ∧ n− (28)

T× = 1 − 1
2ve1 ∧ n× (29)

Proof. We prove only the first part of the proposition since the proof of the
second part is almost the same. First observe that T is a unit versor and
that T+ acts non-trivially only on the G3,1 part of embedded point, see (2),
and since it has the same form as the G3,1 translator we know that it acts
correctly on this part. For the next part of the translator we compute

T−e1T̃− = e1 + un−

T−n̄+T̃− = n̄+ + 1
2u2n−

and the action on all other basis elements in C(x, y) is trivial. Hence

T−C(x, y)T̃− = C(x, y) + 1
2 (u2 + 2xu)n−.

Similarly, we compute that T× acts trivially on C(x, y) up to T×e2T̃× =
e2 + un×. Therefore we have

T−T×C(x, y)T̃×T̃− = C(x, y) + 1
2 (u2 + 2xu)n− + uyn×.

Now it is easy to see that altogether we have

T+T−T×C(x, y)T̃×T̃−T̃+ = C(x + u, y).

�

Remark 5.3. The conic’s inner representation form may be derived in a way
different from Sect. 3. Indeed, the model covariancy may be used and vec-
tors representing “zero position” conics in Example 3.1 may be sandwich-
multiplied by versors for translation and rotation.

Proposition 5.4. The scalor for a scaling by α is given by S = S+S−S×,
where

S+ = α+1
2
√

α
+ α−1

2
√

α
n̄+ ∧ n+ (30)

S− = α+1
2
√

α
+ α−1

2
√

α
n̄− ∧ n− (31)

S× = α+1
2
√

α
+ α−1

2
√

α
n̄× ∧ n×. (32)
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Proof. The part S+ is the G3,1 versor for a scaling. Indeed, S+S̃+ = 1, and
its action on C yields

S+C(x, y)S̃+ = 1
α n̄+ + xe1 + ye2 + 1

2α(x2 + y2)

+ 1
2 (x2 − y2) + xy).

The parts S− and S× are also unit versors and they act by the multiplication
by α on the n− basis element and n× basis element, respectively. Together
we get

S+S−S×C(x, y)S̃×S̃−S̃+ = 1
αC(αx, αy).

�

Remark 5.5. Note that R+ commutes with R1 and R2 but R1 and R2 do not
commute. T× commutes with T+ and T− but T+ and T− do not commute.
Moreover, the translators in x and y direction do not commute in general but
they, of course, commute on C. All this is best checked on the Lie algebra
level. The generators of the above operators are given as follows:

rotation: r = 1
2e1 ∧ e2 + n̄× ∧ n− + n× ∧ n̄−,

x − translation: t1 = − 1
2e1 ∧ n+ − 1

2e1 ∧ n− − 1
2e2 ∧ n×,

y − translation: t2 = − 1
2e2 ∧ n+ + 1

2e2 ∧ n− − 1
2e1 ∧ n×.

scaling: s = n̄+ ∧ n+ + n̄− ∧ n− + n̄× ∧ n×

This is the full list of conformal transformations generators in GAC. However,
the conic sections transform naturally under projective transformations. The
group of projective transformations is of dimension eight. The remaining
transformations are non-isotropic scalings and shears. The discussion of these
transformations lies beyond the scope of this paper and will be a subject to
further research.

Note that the versors from the above propositions are spinors and thus
conformal transformations are represented by orthogonal transformations on
R5,3 with respect to metric (1). And since conics and their intersections are
represented by null spaces of inner products with points, the versors transform
correctly not just points but also conics and their intersections, i.e. all GAC
entities.

Remark 5.6. If we replace a spinor by an invertible element of grade one,
we get a non-Euclidean transformation which we call a general reflection (or
inversion) in GAC. We just mention that in the case that this element of
grade one is the inner representation of an ellipse (or another GAC entity)
we get an inversion in the ellipse (or in the given entity). We provide some
illustrative examples at the end of the next section.

6. An Implementation in Maple

We use a Maple package CLIFFORD for computations in Clifford and Grass-
mann algebras, [1].
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6.1. The Initialization of GAC

The initialization of the Clifford algebra G5,3 in CLIFFORD is given by
prescribing the matrix of bilinear form B according to (1).

with ( C l i f f o r d ) ;

B := blockmatr ix (3 ,3 , [ Matrix ( 3 , 3 ) , Matrix ( 3 , 2 ) ,

−Ident i tyMatr ix ( 3 , 3 ) , Matrix ( 2 , 3 ) , Ident i tyMatr ix ( 2 , 2 ) ,

Matrix (2 ,3) , − Ident i tyMatr ix ( 3 , 3 ) , Matrix ( 3 , 2 ) , Matrix ( 3 , 3 ) ] ) ;

The package uses as a default the standard Grassmann basis in ΛR8, where
R8 is spanned by the vectors called en for 1 ≤ n ≤ 8. We make aliases in
order to emphasize which basis elements play the role of origins, the role of
Euclidean basis, and the role of infinities. Note that the notation differs from
the former one, e1 is called ex, n̄+ is called e0p, n+ is called einfp etc.

a l i a s ( e0p=e1 , e0m=e2 , e0k=e3 , ex=e4 , ey=e5 , e i n f p=e6 ,

einfm=e7 , e i n f k=e8 ) ;

Now the definition of GAC is finished by defining the embedding of the plane
according to (2)

C:=proc (x , y )

e0p+x∗ex+y∗ey+1/2∗(xˆ2+yˆ2)∗ e i n f p

+1/2∗(xˆ2−yˆ2)∗ einfm+x∗y∗ e i n f k ;

end proc :

The duality between representations is implemented according to Remark 4.1
as follows

OtoI := proc (A)

LC(A, e1 &w e2 &w e3 &w e4 &w e5 &w e6 ,B) ;

end proc :

ItoO:= proc (A)

LC(A, e1 &w e4 &w e5 &w e6 &w e7 &w e8 ,B) ;

end proc :

6.2. The Inner Product Representation of Conics

The inner product representation of conics in terms of their internal param-
eters and position and orientation in the plane is given exactly according to
propositions in Sect. 3. For example, the procedure giving the GAC inner
product representation of an ellipse reads

El l := proc ( r , s , u , v , theta )

l o c a l be , al , th ;

th :=2∗ theta ;

a l :=( rˆ2−s ˆ2)/( rˆ2+s ˆ2 ) ;

be :=2∗ r ˆ2∗ s ˆ2/( rˆ2+s ˆ2 ) ;

e0p−a l ∗ cos ( th )∗e0m−a l ∗ s i n ( th )∗ e0k+(u−u∗ a l ∗ cos ( th )

−v∗ a l ∗ s i n ( th ) )∗ ex+(v+v∗ a l ∗ cos ( th)−u∗ a l ∗ s i n ( th ) )∗ ey

+1/2∗(uˆ2+vˆ2−be−(uˆ2−vˆ2)∗ a l ∗ cos ( th)−2∗u∗v∗ a l ∗ s i n ( th ) )∗ e i n f p ;

end proc :

Example 6.1. Let us compute the inner product representation of an ellipse
E1 with semi-axes of length 2 and 1, with the centre point (2, 1), and an
ellipse E2 with the same parameters but rotated by π/6 using the above
procedure. The code

E1:= E l l ( 2 , 1 , 2 , 1 , 0 ) :

E2:= E l l ( 2 , 1 , 2 , 1 , Pi / 6 ) :
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Figure 1. Two ellipses and their intersections

gives

E1 := e0p − (3/5) ∗ e0m + (4/5) ∗ ex + (8/5) ∗ ey + (4/5) ∗ einfp

E2 := e0p−(3/10) ∗ e0m−(3/10) ∗ sqrt(3) ∗ e0k+(7/5−(3/10) ∗ sqrt(3))∗ex

+ (13/10−(3/5) ∗ sqrt(3)) ∗ ey+(1/2 ∗ (5/2−(6/5) ∗ sqrt(3))) ∗ einfp

To visualize the result we compute the inner product of these vectors and we
plot the null points of the resulting expression. The inner product is computed
by procedure LC from the CLIFFORD package.

eq1 := subs ({ Id=1} ,LC(C(x , y ) ,E1 ,B))=0:

eq2 := subs ({ Id=1} ,LC(C(x , y ) ,E2 ,B))=0:

Graph:= imp l i c i t p l o t ( [ eq1 , eq2 ] , x= −3..5 ,y= −3..3 ,

s c a l i n g=constra ined , g r i d r e f i n e =3, legend =[”E1” ,”E2” ] ,

l i n e s t y l e =[ s o l i d , longdash ] ) ;

We also compute the intersections of these two ellipses according to (12) and
we display the result in one graph, see Fig. 1.

LC(C(x , y ) ,E1 &w E2 ,B) :

s o l :=map( a l l v a l u e s , c l i s o l v e (

po in t s : = [ ] :

f o r i from 1 to nops ( s o l 1 ) do po in t s :=[ op ( po in t s ) ,

[ rhs ( s o l 1 [ i ] [ 1 ] ) , rhs ( s o l 1 [ i ] [ 2 ] ) ] ] end do :

GraphPoints := po in tp l o t ( points , symbol s i ze =30, symbol=c i r c l e ) :

p l o t s [ d i sp l ay ] ( { Graph , GraphPoints } ) ;

Example 6.2. Let us consider an example of two hyperbolas and two parabo-
las. Let H1 be a hyperbola with semi-axes 2 and 1 placed in the origin and
rotated by π/6, and let H2 be the same hyperbola but translated to (1, 2).
Let P1 be a parabola with a semilatus rectum 1 shifted to (3, 1) and rotated
by π/2, and let P2 be a parabola in the same position but with the semilatus
rectum equal to 2. Maple procedures for GAC inner product representations
defined according to (9) and (10) then give

H1 := e0p − (5/6) ∗ e0m − (5/6) ∗ sqrt(3) ∗ e0k + (4/3) ∗ einfp

H2 := e0p − (5/6) ∗ e0m − (5/6) ∗ sqrt(3) ∗ e0k+(1/6 − (5/3) ∗ sqrt(3)) ∗ ex

+ (11/3−(5/6)∗sqrt(3))∗ey+(1/2 ∗ (61/6−(10/3) ∗ sqrt(3))) ∗ einfp

P1 := e0p − e0m − 2 ∗ ex + 2 ∗ ey − 5 ∗ einfp

P2 := e0p − e0m − 4 ∗ ex + 2 ∗ ey − 11 ∗ einfp
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Figure 2. Two hyperbolas and parabolas and their inter-
sections

Replacing E1, E2 in the above code by H1, H2 and P1, P2, respectively,
we obtain graphs displayed in Figure 2.

6.3. The outer product representation of conics

The conics can be easily constructed from points lying on them by taking
their wedge product according to Proposition 4.2.

Example 6.3. Let us compute a conic spanned by points [3,4], [−2,−1], [1,−2],
[−4,2] and [−3,4]. Note that we move from the outer product representation
to the inner product representation using the procedure OtoI defined above.

Conic :=C(3 ,4 ) &w C(−2,−1) &w C(1 , −2) &w C( −4 ,2) &w C( −3 ,4) ;

ConicI :=OtoI ( Conic ) ;

This code gives

ConicI := − 630 ∗ e0k − 3570 ∗ e0p + 1050 ∗ e0m − 6930 ∗ ey

− 2520 ∗ ex + 20580 ∗ einfp

We compute the inner product of this vector with an embedded point,
and we prove that we have got the right conic by plotting the result. Indeed,
the following code provides the graph displayed in Fig. 3.

eq := subs ({ Id=1} ,LC(C(x , y ) , CI ,B))=0:

Gr1:= imp l i c i t p l o t ( eq , x= −5..5 ,y= −5..5 , s c a l i n g=constra ined ,

g r i d r e f i n e =3):

Gr2:= po in tp l o t ( [ [ 3 , 4 ] , [ −2 , −1] , [1 , −2] , [ −4 ,2 ] , [ −3 ,4 ] ] ,

symbol s i ze =30, symbol=c i r c l e ) :

p l o t s [ d i sp l ay ] ( { Gr1 , Gr2 } ) ;

Example 6.4. Let us take the same list of points as in the previous example
and let us compute and plot the axes-aligned conic AI spanned by the first
four points from the list, the circle CI spanned by the first three points and
the line LI spanned by the first two points. According to Proposition 4.2, we
have
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Figure 3. An ellipse spanned by five points

AI:=OtoI (C(3 , 4 ) &w C(−2,−1) &w C(1 , −2) &w C( −4 ,2) &w e i n f k ) :

CI:=OtoI (C(3 , 4 ) &w C(−2,−1) &w C(1 , −2) &w einfm &w e in f k ) :

LI :=OtoI (C(3 , 4 ) &w C(−2,−1) &w e in fp &w einfm &w e in f k ) :

and this gives

AI := −80 ∗ e0m + 50 ∗ e0p + 75 ∗ ey + 105 ∗ ex − 290 ∗ einfp

CI := 20 ∗ e0p + 30 ∗ ey + 10 ∗ ex − 100 ∗ einfp

LI := −5 ∗ ey + 5 ∗ ex − 5 ∗ einfp

Computing inner products and plotting results, we obtain a graphical verifi-
cation of correctness, see Fig. 4.

6.4. The transformations in GAC

The transformations are implemented as procedures according to propositions
in Sect. 5. For example, the rotation is given by Proposition 5.1 as follows

Rotor :=proc ( t )

l o c a l Rot1 , Rot2 , Rot3 ;

Rot1:= cos ( t /2)+ s i n ( t /2)∗( ex &w ey ) ;

Rot2:= cos ( t)+ s i n ( t )∗ ( e0k &w einfm ) ;

Rot3:= cos ( t)− s i n ( t )∗ ( e0m &w e in f k ) ;

Rot1 &c (Rot2 &w Rot3 ) ;

end proc :

ro t := proc (A, t )

Rotor ( t ) &c A &c Rotor(−t ) ;

end proc :

The procedures defining versors for translations in the x and y direction, given
by Proposition 5.2, are called T1 and T2, respectively, and the procedure
defining the scalor given by Proposition 5.4 is called S. Then the procedures
for translation and scaling read

t rans := proc (A, x , y )

T1(x ) &c T2(y ) &c A &c r ev e r s i on (T2(y ) ,B) &c r ev e r s i on (T1(x ) ,B) ;

end proc :

s c a l e := proc (A, t )

S( t ) &c A &c r ev e r s i on (S( t ) ,B) ;

end proc :
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Figure 4. An axes-aligned conic, a circle, and a line
spanned by given points

Example 6.5. Let us compute Euclidean transformations of an ellipse E with
semi-axes 3 and 2 aligned to the axes with its center in the origin. First, we
compute translation by (1, 2), then rotation by π/6, and finally rotation by
π/6 of the translated ellipse.

E:= El l ( 3 , 2 , 0 , 0 , 0 ) : Et:= trans (E, 1 , 2 ) :

Er:= rot (E, Pi / 6 ) : Ert := rot (Et , Pi / 6 ) :

We get

E := e0p − (5/13) ∗ e0m − (36/13) ∗ einfp

Et := e0p − (5/13) ∗ e0m + (8/13) ∗ ex + (36/13) ∗ ey + (4/13) ∗ einfp

− (32/13) ∗ einfm + (36/13) ∗ einfk

Er := e0p − (5/26) ∗ e0m + (5/26) ∗ sqrt(3) ∗ e0k − (36/13) ∗ einfp

Ert := e0p − (5/26) ∗ e0m + (5/26) ∗ sqrt(3) ∗ e0k

+ (2/13 ∗ (9 + 2 ∗ sqrt(3))) ∗ ex

+ (2/13 ∗ (−2 + 9 ∗ sqrt(3))) ∗ ey + (4/13) ∗ einfp

+ (2/13∗(9∗sqrt(3)−8)) ∗ einfm + (2/13 ∗ (9 + 8 ∗ sqrt(3))) ∗ einfk

and the corresponding ellipses are displayed in Fig. 5.

Example 6.6. We also compute a rescaling of the rotated ellipse Er. Note
that the scaling is given by conjugation with a versor given by Proposition
5.4. The code

Ers := s c a l e (Er , 1 . 5 ) :
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Figure 5. Euclidean transformations of an ellipse

Figure 6. A scaling of an ellipse

gives

Ers :=.589824 ∗ e0p − .113427692 ∗ e0m + .196462526 ∗ e0k

− 3.675057232 ∗ einfp

and the resulting ellipse is displayed in Fig. 6.

Remark 6.7. If we replace the above versors by an invertible vector, we get
a transformation which is neither Euclidean nor conformal. Figure 7 shows
what happens when the vector is a line and we act on an ellipse and when
the vector is an ellipse and we act on a line, respectively.

Figure 8 shows what happens when the vector is a an ellipse and we act
on a point. The inversion of an inner point with respect to the ellipse gives
the outer ellipse and the inversion of an outer point gives the inner ellipse.
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Figure 7. The inversion of a line in an ellipse and the ellipse
in a line

Figure 8. The inversion of inner and outer point in an
ellipse

7. Comparison to Known Concepts

Nowadays, the corresponding theory is partially elaborated for G5,3 and G6 by
Perwass in [9], for (two-dimensional version of) double conformal geometric
algebra (DCGA) in [2,3] by Easter and Hitzer, and for (two-dimensional ver-
sion of) quadric geometric algebra (QGA) in [10] by Zamora-Esquivel. While
the concept of G6 = G6,0, [9], seems to be geometrically correct for conics,
its main disadvantage is that it does not contain translations. Moreover, even
rotations are obtained as algebraic operator in [9] with no clear natural expla-
nation. The concepts of DCGA and QGA are two different rather algebraic
extensions of CGA.

More precisely, QGA, [10], is a geometric algebra G6,3 together with
an embedding of a Euclidean space R3 constructed as three independent
stereographic projections for each axis separately. In the planar case, the
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algebra is G4,2 and the embedding of the plane is given by

cQ(x, y) = e01 + e02 + xe1 + ye2 +
1

2
(x2e∞1 + y2e∞2), (33)

where the basis e01, e02, e1, e2, e∞1, e∞2 has the same meaning as in CGA
but is (orthogonally) extended by one Witt pair of null vectors e02, e∞2.
Following the considerations in CGA, the euclidean entities described in the
inner product representation are exactly the algebraic varieties generated by
the polynomials in 1, x, y, x2, y2 and therefore just axes-aligned conics are
well defined. Moreover, the operations that work correctly in QGA include
translation, transposition, dilation, and intersection only. In general, rotation
does not work correctly neither for conics nor points. Particularly, rotation of
points must be performed in CGA after projection. Moreover, a conic rotated
by an arbitrary angle cannot be represented by any known QGA entity.

Next, the planar concept of DCGA, [2,3], corresponds to the geomet-
ric algebra G6,2. It contains two subalgebras isomorphic to the conformal
geometric algebra G3,1 which we denote by plus and minus sign superscript.
Following CGA, let us choose a basis e±

0 , e±
1 , e±

2 , e±
∞ of the generating qua-

dratic vector space R6,2 = R3,1 ⊕ R3,1 in which the quadratic form has a
block-diagonal form with blocks given as in CGA. Then a point (x, y) is
mapped to a DCGA (double) point P = P+ ∧ P− by

P± = xe±
1 + ye±

2 +
1

2
(x2 + y2)e±

∞ + e±
0 . (34)

The key fact is the following. If A ∈ G+
3,1 and B ∈ G−

3,1 and P = P+ ∧ P− is

a (double) point then the properties of the inner product imply

(P+ ∧ P−) · (A ∧ B) = −(P+ · A)(P− · B).

Hence the DCGA inner product representations are obtained as products of
CGA representations and DCGA objects are algebraic varieties generated by
polynomials which are linear combinations of 1, x, y, x2 + y2, xy, x(x2 + y2),
y(x2 +y2), and (x2 +y2)2. Since the map from the Euclidean space to DCGA
is a product of two inverses to stereographic projections, and thus a con-
formal map, all conformal transformations work and they are represented
by the same algebra elements as in CGA. Unfortunately DCGA does not
satisfy a basic property, namely the uniquess of the representation. The cor-
respondence between geometric objects and algebraic entities is ambiguous.
Consequently, it lacks the duality between the inner and outer representation.

On the other hand, we continue in another C. Perwass’s concept, [9],
precisely that of G5,3 and finalize its description by the complete classification
of the elements corresponding to the appropriate conic sections with full
advantages of geometric algebra approach, e.g. presence of the duality and
presence of Euclidean transformations as algebra elements with natural and
well defined action (Table 1).
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Table 1. The symbol 
 stands for capable, × for incapable

DCGA QGA GAC

dimension (for the plane) 8 6 8
representation of conics 
 
 

IPNS - OPNS duality × 
 

Euclidean transformations 
 × 


8. Conclusion

We described representation of the Euclidean plane that provides the same
efficiency for calculations with arbitrary conic sections as is performed by
CGA for spheres. More precisely, we defined the Geometric Algebra for Con-
ics (GAC) as Clifford algebra G5,3 together with the embedding (2) of the
plane. Consequently, we finalized the concept of C. Perwass by the complete
description of the elements corresponding to the appropriate conic sections as
well as to particular transformations. Particularly, we provided the equation
of ellipse and hyperbola, (9), and parabola, (10), in the GAC inner prod-
uct representation and a description of a general conic in the outer product
representation, (4.2). Furthermore, we have found the exact GAC elements
that represent the transformations, such as rotation, (5.1), translation, (5.2),
and scaling, (5.4), which proves the correctness of the GAC concept. We con-
clude by the list of examples in Maple displayed together with the source
code.
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Abstract
We propose to represent both n-qubits and quantum gates acting on them as elements
in the complex Clifford algebra defined on a complex vector space of dimension 2n.
In this framework, the Dirac formalism can be realized in straightforward way. We
demonstrate its functionality by performing quantum computations with several well
knownexamples of quantumgates.Wealso compare our approachwith representations
that use real geometric algebras.
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1 Introduction

Real geometric (Clifford) algebras (GA)may be understood as a generalisation of well
known quaternions which is an alternative for matrix description of orthogonal trans-
formations. Real geometric algebras have a wide range of applications in robotics [14,
17], image processing [7], numerical methods [18], etc. Among the main advantage
of this approach we count the calculation speed, straightforward and geometrically
oriented implementation and effective parallelisation [13, 16]. We stress that all these
implementations are using Clifford’s geometric algebra to represent specific orthogo-
nal transformations.
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Fig. 1 Bloch sphere for a qubit
represented in quaternions

Recently, an increasing number of papers adopt the apparat of real GA in the
description, elaboration and analysis of Quantum Computing (QC) algorithms [1, 6,
8]. The basic idea for this lies in identification of a state qubit with a Bloch sphere
together with the identification of qubit gates with the rotations of the sphere. Namely,
it is well known that a normalized qubit can be written in terms of basis vectors |0〉, |1〉
as

|ψ〉 = cos(θ/2)|0〉 + (cosϕ + i sin ϕ) sin(θ/2)|1〉, (1.1)

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π and that parameters θ, ϕ can be interpreted as
spherical coordinates of a point on the unit sphere in R3, see Fig. 1.

The spirit of GA description is to represent a point on the sphere by the rotation that
takes a fixed initial point to that point. Under the usual choices, see Fig. 1, the initial
point is the north pole (0, 0, 1) and the qubit (1.1) corresponds to the counterclockwise
rotation by θ with respect to y axis composed with the clockwise rotation by ϕ with
respect to z axis. In particular, the basis states |0〉, |1〉 are represented by the identity
and rotation θ = π respectively. In the quaternionic description we have (0, 0, 1) = k
and the rotations are represented by elements exp(−1/2θ j) = cos(θ/2) − j sin(θ/2)
and exp(1/2ϕk) = cos(ϕ/2) + k sin(ϕ/2) respectively. Indeed, the Bloch sphere
representation of qubit (1.1) is given by

e
1
2ϕke− 1

2 θjke
1
2 θje− 1

2ϕk = cosϕ sin θ i + sin ϕ sin θ j + cos θk

In this sense thequbit state (1.1) is representedbyquaternion exp(1/2ϕk) exp(−1/2θ j).
In particular, the basis states |0〉, |1〉 are represented by quaternions |0〉 = 1 and
|1〉 = exp(−1/2π j) = −j respectivelywhich inGA language is Eq. (4.3), see Sect. 4.1
for more details. In principle, this representation of qubits is based on exceptional iso-
morphisms of low-dimensional Lie groups SU (2), Spin(3) and Sp(1). For higher
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dimensions, no similar natural identification of unitary and spin groups exists. There-
fore, to realise the states of multi-qubit, it is necessary to use so-called correlators
which increases algebraic abstraction and lacks the original elegance. Indeed, such
approach is no competition to elegant Dirac formalism.

In our paper, we present an alternative to the qubit representation in the form of
complex Clifford algebras which are indeed substantially more appropriate for QC
representation by means of GA because they respect the complex nature of quantum
theory. In our approach, Dirac formalism may be translated to complex GA of an
appropriate dimension in rather straightforward way and, in spite of abstract symbolic
Dirac formalism, all expressions are represented in a particular algebra and thus may
be manipulated and implemented as algebra elements directly, without any need for
matrix representation. In the sequel, we briefly recall the definition of real GA and
provide a more detailed introduction to complex GA. In Sect. 3, we show the repre-
sentation of qubits and multi-qubits in complex GA, their transformations (gates). We
provide an explicit forms of elementary 1-gates and 2-gates. We also discuss the case
of multi-gates, ie. gates obtained by a tensor product. In Sect. 4, we describe a qubit
by means of real geometric algebra. More precisely, we compare a description known
from literature, ie. the one based on the isomorphism of unitary group SU (2) and spin
group Spin(3), with the real description following from our complex GA approach
and an isomorphism C2 → G3 of complex and real algebra.

2 Complex Clifford algebras

A Clifford algebra is a normed associative algebra that generalizes the complex num-
bers and the quaternions. Its elements may be split into Grassmann blades and the ones
with grade one can be identified with the usual vectors. The geometric product of two
vectors is a combination of the commutative inner product and the anti-commutative
outer product. The scalars may be real or complex. In Sect. 3 we show that the com-
plex Clifford algebra constructed over a quadratic space of even dimension can be
efficiently used to represent quantum computing but we start with the real case.

2.1 Real Clifford algebras

The construction of the universal real Clifford algebra is well-known, for details see
e.g. [9, 20]. We give only a brief description here. Let the real vector space Rm be
endowed with a non-degenerate symmetric bilinear form B of signature (p, q), and
let (e1, . . . , em) be an associated orthonormal basis, i.e.

B(ei , e j ) =

⎧
⎪⎨

⎪⎩

1 if i = j = 1, . . . , p

−1 if i = j = p + 1, . . . ,m

0 if i �= j

where 1 ≤ i, j ≤ m = p + q.
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Let us recall that the Grassmann algebra is an associative algebra with the anti-
symmetric outer product defined by the rule

ei ∧ e j + e j ∧ ei = 0 for 1 ≤ i, j ≤ m.

The Grassmann blade of grade r is eA = ei1 ∧ · · · ∧ eir , where the multi-index A is a
set of indices ordered in the natural way 1 ≤ i1 ≤ · · · ≤ ir ≤ m, and we put e∅ = 1.
Blades of orders 0 ≤ r ≤ m form the basis of the graded Grassmann algebra �(Rm).
Next, we introduce the inner product

ei · e j = B(ei , e j ), 1 ≤ i, j ≤ m,

leading to the so-called geometric product in the Clifford algebra

ei e j = ei · e j + ei ∧ e j , 1 ≤ i, j ≤ m,

The respective definitions of the inner, the outer and the geometric product are then
extended to blades of the grade r as follows. For the inner product we put

e j · eA = e j · (ei1 ∧ · · · ∧ eir ) =
r∑

k=1

(−1)k B( j, ik)eA\{ik },

where eA\{ik } is the blade of grade r − 1 created by deleting eik from eA. This product
is also called the left contraction in literature. For the outer product we have

e j ∧ eA =
{
e j ∧ ei1 ∧ · · · ∧ eir if j /∈ A

0 if j ∈ A

and for the geometric product we define

e j eA = e j · eA + e j ∧ eA.

Finally, these definitions are linearly extended to the whole of the vector space�(Rm).
Thus we get an associative algebra over this vector space, the so-called real Clifford
algebra, denoted by Gp,q = Cl(p, q, R). Note that this algebra is naturally graded;
the grade zero and grade one elements are identified with R and Rm respectively. The
projection operator Gp,q → �r (Rm) will be denoted by [ ]r .

This grading define a Z2-grading of the Clifford algebra according to the parity of
grades. Namely, the linear map v → −v on Rm extends to an automorphism α called
the grade involution and decomposes Gp,q into positive and negative eigenspaces.
The former is called the even subalgebra G0

p,q and the latter is called the odd part
G1

p,q . In addition to α, there are two important antiautomorphisms of real Clifford
algebras. The first one is x̃ called the reverse or transpose operation and it is defined
by extension of identity on Rm and by the antiautomorphism property x̃ y = ỹ x̃ . The
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second antiautomorphism is called the Clifford conjugation x̄ and the operation is
defined by composing α and the reverse

x̄ = α(x̃) = α̃(x).

2.2 The complexification

When allowing for complex coefficients, the same generators eA produce by the same
formulas the complexClifford algebrawhichwedenote byCm = Cl(m, C). Clearly, in
the complex case no signature is involved, since each basis vector e j may bemultiplied
by the imaginary unit i to change the sign of its square. Hence wemay assume we start
with the real Clifford algebraGm with the inner product ei e j = δi j , 1 ≤ i, j ≤ m, and
we construct the complex Clifford algebra as its complexification Cm := Gm ⊕ iGm,

i.e. any element ϕ ∈ Cm can be written as ϕ = x+ iy, where x, y ∈ Gm . The complex
Clifford algebras for small m are well known; C0 are complex numbers itself, C1 is
the algebra of bicomplex numbers andC2 is the algebra of biquaternions. More details
on complex Clifford algebras one can find in the papers [2–4, 10].

The construction via the complexification ofGm leads to the definition an important
antiautomorphism of Cm, so-called Hermitian conjugation

ϕ† = (x + iy)† = x̄ − i ȳ, (2.1)

where the bar notation stands for the Clifford conjugation in Gm . Note that on the
zero grade part of the complex Clifford algebra C0 = C it coincides with the usual
complex conjugation. The elements satisfying ϕ† = ϕ and ϕ† = −ϕ will be called
Hermitian and anti-Hermitian respectively. Hermitian conjugation is a very important
anti-involution which is the Clifford analogue of the conjugate transpose in matrices.
It leads to the definition of the Hermitian inner product on Cm given by

〈ϕ|ψ〉 = [ϕ†ψ]0, ϕ, ψ ∈ Cm (2.2)

wherewe recall that [ ]0 denotes the projection to the scalar part, i.e. the grade zero part.
Indeed, it is easy to see that it is linear in the second slot and conjugate linear in the first
slot; for each z ∈ C and ϕ ∈ Cm we have (zϕ)† = ϕ†z† = z̄ϕ† since the Hermitian
conjugation is anti-automorphism. The Hermitian symmetry of (2.2) follows from the
involutivity of the Hermitian conjugation while its positive definiteness follows from
the fact that

〈ϕ|ϕ〉 = [ϕ†ϕ]0 =
∑

A

ϕ2
A,

where A is an arbitrary multiindex and ϕA is the coefficient at the Grassmann blade
eA, i.e. ϕ = ∑

A ϕAeA. Let us discuss the last equality in more detail. For two multi-
indices A = {i1, . . . , ir }, B = {k1, . . . , ks} the scalar projection [ẽAeB]0 is nonzero
only if the grades are equal, i.e. r = s. Then by the definition of geometric product and
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the reverse operation we get [ẽAeB]0 = (ei1 ·ek1) · · · (eir ·ekr ) = δi1k1 · · · δir kr = δAB ,
whence by the linearity of the grade projection

[ϕ†ϕ]0 =
∑

A,B

ϕ̄AϕB[ẽAeB]0 =
∑

A

ϕ2
A.

2.3 Witt basis

Henceforth we assume the dimension of the generating vector space is even, i.e.
m = 2n. In such a case the complexification of the Clifford algebra can be introduced
by considering so-called complex structure, i.e. a specific orthogonal linear transfor-
mation J : R2n → R2n such that J 2 = −1, where 1 stands for the identity map.
Namely, we choose J such that its action on the orthonormal basis e1, . . . , e2n is given
by J (e j ) = −e j+n and J (e j+n) = e j , j = 1, . . . , n. With J one may associate two
projection operators which produce the main objects of the complex setting by acting
on the orthonormal basis, so-called Witt basis elements ( f j , f †j ). Namely, we define

f j = 1

2
(1 + i J )(e j ) = 1

2
(e j − ie j+n), j = 1, . . . , n

f †j = 1

2
(1 − i J )(e j ) = 1

2
(e j + ie j+n), j = 1, . . . , n

Note that it is not confusion of the notation since f †j indeed is the image of f j under
Hermitian conjugation (2.1). The Witt basis elements are isotropic with respect to the
geometric product, i.e. for each j = 1, . . . , n they satisfy f 2j = 0 and f †j

2 = 0. They
also satisfy the Grassmann identities

f j fk + fk f j = f †j f
†
k + f †k f †j = 0, j, k = 1, . . . , n (2.3)

and the duality identities

f j f
†
k + f †k f j = δ jk, j, k = 1, . . . , n (2.4)

The Witt basis of the whole complex Clifford algebra C2n is then obtained, similarly
to the basis of the real Clifford algebra, by taking the 22n possible geometric products
of Witt basis vectors, i.e. it is formed by elements

( f1)
i1( f †1 ) j1 · · · ( fn)in ( f †n ) jn , ik, jk ∈ {0, 1} for k = 1, . . . , n (2.5)

One can eventually use the Grassmann blades of Witt elements as the basis of C2n .
The relation of the two basis can be deduced from the relation of the geometric product
of Witt basis elements to the corresponding inner and outer product, for more details
see [3, 20].

f j fk = f j · fk + f j ∧ fk = f j ∧ fk
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f †j f
†
k = f †j · f †k + f †j ∧ f †k = f †j ∧ f †k

f j f
†
k = f j · fk + f j ∧ f †k = 1

2
δ jk + f j ∧ f †k

2.4 Spinor spaces

In the language of Clifford algebras, spinor space is defined as a minimal left ideal
of the complex Clifford algebra and is realized explicitly by means of a self-adjoint
primitive idempotent. The realization of spinor space within the complex Clifford
algebra C2n can be constructed directly using the Witt basis as follows. We start by
defining

I j = f j f
†
j and K j = f †j f j , j = 1, . . . , n

Direct computations show that both I j , K j aremutually commuting self-adjoint idem-
potents. More precisely, for j, k = 1, . . . , n the following identities hold.

I †j = I j , I 2j = I j and K †
j = K j , K 2

j = K j ,

I j Ik = Ik I j , K j Kk = KkK j ,

I j Kk = Kk I j whenever j �= k, and I j K j = K j I j = 0.

Moreover, the duality relations (2.4) betweenWitt basis vectors imply that I j+K j = 1
for each j = 1, . . . , n.Hencewe get the resolution of the identity 1 = ∏n

j=1(I j+K j ).

Consequently we get

C2n =C2n

n∏

j=1

(I j + K j )=C2n I1 · · · In ⊕ C2n I1 · · · In−1K1 ⊕ · · · ⊕ C2nK1 · · · Kn,

a direct sum decomposition of the complex Clifford algebra into 2n isomorphic real-
izations of the spinor space that are denoted according to the specific idempotent
involved:

S{i1...is }{k1...kt } = C2n Ii1 . . . Iis Kk1 . . . Kkt ⊂ C2n, (2.6)

where s + t = n and the indices are pairwise different. Each such space has dimen-
sion 2n and its basis is obtained by right multiplication of the basis of C2n by the
corresponding primitive idempotent Ii1 · · · Iis Kk1 · · · Kkt . By the basic properties of
the Witt basis elements (2.3) and (2.4) it is easy to see that this action is nonzero if
and only if the element of C2n actually lies in the Grassmann algebra generated by
n-dimensional space ( f †i1 , . . . , f †is , fk1 , . . . , fkt ), i.e. we may write

S{i1···is }{k1···kt } = �( f †i1 , . . . , f †is , fk1 , . . . , fkt )Ii1 · · · Iis Kk1 · · · Kkt . (2.7)
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In terms of multiindices A = {i1, . . . , is}, B = {k1, . . . , kt } this spinor space can
be written shortly as SAB . It is an easy observation that it has the structure of a Hilbert
space of dimension 2n due to the Hermitian product (2.2) and that the multiplication
in C2n makes each spinor space SAB into a left C2n-module. Hence the elements
of the complex Clifford algebra that keep the Hermitian product invariant define a
representation of the corresponding unitary group on the spinor space. Namely let a
λ ∈ C2n act on two spinors ϕ,ψ ∈ SAB . Then we compute 〈λϕ|λψ〉 = [ϕ†λ†λψ]0
by definition and due to the antiautomorphism property of the Hermitian conjugation.
Hence the elements of the complex Clifford algebra such that

λ†λ = 1 (2.8)

holds keep the Hermitian product invariant and thus define a representation of the
unitary group U (2n) on the spinor space SAB . These elements also satisfy λλ† = 1
and will be called unitary elements of C2n in analogy with unitary matrices. Let us
remark that in the representation theory this representation of the unitary group is well
known. It comes from the so called spin representation of the corresponding complex
orthogonal group.

3 Quantum computing in complex Clifford algebras

The idea is to perform quantum computing in the Hilbert space defined by a complex
Clifford algebra with Hermitian product defined by (2.2) instead of the classical real-
ization of the Hilbert space on complex coordinate space with the standard Hermitian
inner product. A quantum state is then represented by an element of a complex Clifford
algebra lying in spinor space (2.6) and unitary transformations are then realized as ele-
ments (2.8) of the same algebra. The computation becomes especially efficient when
using Witt basis of the complex Clifford algebra, see 2.3. However the mathematical
framework described in the previous section allows for a direct application to general
states and transformations of multiple qubits, for clarity we start with the description
of the basic case of a single qubit.

3.1 A qubit and single qubit gates

A qubit will be represented by an element in the complex Clifford algebra C2 instead
of its standard representation by a vector in the complex coordinate space C2. The
Witt basis elements ( f , f †) satisfy the Grassmann and duality identities

f 2 = f †2 = 0, f f † + f † f = 1,

leading to f f † = 1
2 + f ∧ f † and [ f f †]0 = 1

2 in particular. The Witt basis vectors
induce a basis of the complex Clifford algebra C2 of the form (1, f , f †, f f †). In this
algebra we have two primitive idempotents I = f f † and K = f † f that give rise to
two isomorphic spinor spaces: S = C2 I = �( f †)I and S̄ = C2K = �( f )K . For
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representing the qubit we choose the former one, see Remark 3.1. Choosing the basis
(1, f †) of the Grassmann algebra �( f †), we get the following basis of S that will
represent the zero state and the one state of a qubit

|0〉 = I = f f †

|1〉 = f † I = f † f f † = (1 − f f †) f † = f †,
(3.1)

whence the Clifford algebra representation of a qubit in a general superposition state
|ψ〉 = α|0〉 + β|1〉, for arbitrary complex numbers α, β, is given by

ψ = (α + β f †)I = α f f † + β f † ∈ S ⊂ C2. (3.2)

However the basis (3.1) of spinor space S is orthogonal with respect to the Hermitian
product in Clifford algebra C2 defined by (2.2), it is not orthonormal since the length
of the basis elements equals 1/2 due to the spinorial nature of the representation. To
make the basis orthonormal we will modify the Hermitian product in (2.2) by this
factor, namely we will assume 〈ϕ|ψ〉 = 2[ϕ†ψ]0 for any spinors ϕ,ψ ∈ C2. Indeed,
then we compute

〈0|1〉 = 2[ f f † f †]0 = 0,

〈0|0〉 = 〈1|1〉 = 2[ f f †]0 = 1.

Remark 3.1 The choice of idempotent I is motivated by conventions in physics for
creation and annihilation operators. Indeed, f † is a realization of the abstract creation
operator of the so-called CAR algebra and thus we want it to represent the qubit state
|1〉 rather than |0〉.

A single qubit gate is represented by an unitary element in Clifford algebra C2 and
it acts on a qubit in spinor space S by left multiplication. Obviously the identity gate is
defined by 1 ∈ C2 and serially wired gates are given by the product of the individual
representatives in C2 due to the associativity of the Clifford product. For our choice
of the basis of qubit states the commonly used quantum gates operating on a single
qubit are represented in terms of the Witt basis as follows.

Proposition 3.2 Representing the basic qubit states in the complex Clifford algebra
C2 as |0〉 = f f †, |1〉 = f †

we get representations of single qubit gates in C2

X-gate: λX = f † + f

Y-gate: λY = i f † − i f

Z-gate: λZ = f f † − f † f

Proof By the definition of Hermitian conjugation in Clifford algebra C2, the identi-
fication of basic qubit states |0〉 = f f †, |1〉 = f † leads to the identification of their
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Hermitian duals 〈0| = f f †, 〈1| = f . Then we get a representation of projection
operators

|0〉〈0|= f f † f f †= f f †, |0〉〈1|= f f † f = f , |1〉〈0|= f † f f †= f †, |1〉〈1|= f f †,

where we used the Grassmann and duality identities for theWitt basis elements f , f †.
The representations of single qubit gates from the proposition then follow by their
definitions on basic qubit states. �

Remark 3.3 Using basis 1, e1, e2, e1 ∧ e2 of Clifford algebra C2 generated by an
orthonormal basis e1, e2 of C2 instead of the Witt basis the representation of single
qubit gates X ,Y and Z are given as

λX = e1, λY = −e2, λZ = ie1 ∧ e2

Example 3.4 Let us discuss the some of these basic quantum gates in more detail.
The X -gate is the quantum equivalent to of the NOT gate for classical computers,
sometimes called a bit-flip as it maps the basis state |0〉 to |1〉 and vice versa. Hence
we have

X = |1〉〈0| + |0〉〈1| = f † + f .

which is equal to e1 by definition of the Witt basis elements. We can also compute
directly the action of the corresponding element of C2 on a qubit basis in S to prove
the correctness of the representation

λX |0〉 = ( f † + f ) f f † = f † f f † = f † = |1〉,
λX |1〉 = ( f † + f ) f † = f f † = |0〉.

Similarly, for the phase-flip Z -gate we get Z = |0〉〈0| − |1〉〈1| = f f † − f † f since
it leaves the basis state |0〉 unchanged and maps |1〉 to −|1〉 and a general phase-shift
gate |1〉 �→ eiϕ |1〉 is given by Rϕ = f f † + eiϕ f † f . The effect of a series circuit
where X is put after Z can be described as a single gate represented by the Clifford
product

X Z = ( f † + f )( f f † − f † f ) = f † − f .

It is also easy to check the involutivity of the single qubit gates X ,Y and Z , e.g. for a
serial composition of two X -gates we have

X2 = ( f † + f )( f † + f ) = f † f + f † f = 1.

The representations of rotation operator gates can be obtained directly by computing
exponentials of gates X ,Y , Z in C2. Consequently one can get the formula for the
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Hadamard gate, an important single qubit gate that we have not discussed yet. Namely,
since Y 2 = 1, we compute

H = X exp(−iYπ/4) = ( f † + f )(cos π
4 + sin π

4 ( f † − f ))

= 1√
2
( f f † − f † f + f + f †),

which is equal to 1√
2
(e1 + ie1 ∧ e2) in the orthonormal basis.

The Clifford algebra representations of basic single qubit gates X , Y and Z in
Proposition 3.2 determine an explicit form of a unitary element in C2 representing a
general single qubit gate in terms of the Witt basis.

Corollary 3.5 Each single qubit gate operating on qubit (3.2) is represented by an
element of the complex Clifford algebra C2 of a form

λ = a f f † + b f + c f † + d f † f . (3.3)

where a, b, c, d ∈ C are complex numbers such that a2+c2 = b2+d2 = 1, b̄a+d̄c =
0 holds.

Proof Can be deduced from the description of projection operators in the proof of
Proposition 3.2 or directly by writing the condition on unitary elements λ†λ = 1
in terms of the Witt basis, see (2.8), as follows. An arbitrary element λ ∈ C2 can
be written as in (3.3) for some complex numbers a, b, c, d ∈ C since the four-tuple
( f f †, f †, f , f † f ) form a basis of C2. The right-hand side of the equation for unitary
elements can be written as f f † + f † f and for the left-hand side we compute

λ†λ = (ā f f † + b̄ f † + c̄ f + d̄ f † f )(a f f † + b f + c f † + d f † f )

= (a2 + c2) f † f + (b̄a + d̄c) f † + (āb + c̄d) f + (b2 + d2) f f †,

where we used the definition of the Hermitian conjugation and its properties discussed
in Sect. 2.2 and where we repeatedly used the duality and Grassmann identities for
the Witt basis elements f , f †, see Sect. 2.3. The result follows by comparing the
coefficients on both sides of the equation while noting that āb + c̄d is the complex
conjugate of b̄a + d̄c. �


Note that the condition on these coefficients can be expressed equivalently as the
orthonormality of complex vectors (a, c) and (b, c) with respect to the standard Her-
mitian product on C2. Hence the coefficients define a 2×2 unitary matrix proving the
equivalence between Clifford and matrix descriptions. Namely, each unitary element
in C2 corresponds to a matrix in U (2) as follows.

a f f † + b f + c f † + d f † f ↔
(
a b
c d

)

(3.4)

123

115



  310 Page 12 of 21 J. Hrdina et al.

Remark 3.6 Upon restriction to a normalized qubit 〈ψ |ψ〉 = 2[ψ†ψ]0 = α2+β2 = 1,
it is sufficient to consider gates from the special unitary group SU (2), the con-
nected component of U (2). Such gates are represented by unitary matrices with
unite determinant and that they can be written as displayed in (3.4) for b = −c̄
and d = ā. Hence the elements in C2 representing subgroup SU (2) are of a form
λ = a f f † − c̄ f + c f † + ā f † f .

3.2 Multiple qubits andmultiple qubit gates

Following constructions in Sect. 2 the Hilbert space of states of a general n-qubit can
be represented by a spinor space in the complex Clifford algebraC2n and n-qubit gates
as unitary elements in the same algebra. For the explicit description we choose Witt
basis ( f1, f †1 , . . . , fn, f †n ) of complex coordinate space C2n leading to the Witt basis
of the Clifford algebra C2n formed by 22n geometric products of these elements given
by (2.5). In this way we get a realization of the standard Fock basis of spinor space [5,
11]. From the 2n spinor spaces contained in the algebra we choose the spinor space
Sn = C2n I defined by primitive idempotent

I = I1 · · · In = f1 f
†
1 · · · fn f †n (3.5)

for modelling states of a n-qubit. This choice is motivated by its identification with the
Grassmann algebra generated by “creation operators” f †1 , . . . , f †n . Indeed, for such a
realization of the spinor space of a n-qubit we have

Sn = C2n I = �( f †1 , . . . , f †n )I (3.6)

since f j I = 0 for each j = 1, . . . , n by Grassmann and duality identities for the
Witt basis elements. Similarly to the case of a single qubit, we multiply the Hermitian
product (2.2) by a normalization factor 2n that reflects the spinorial nature of our
representation in order to get a simple formula for elements of unite norm. Namely,
for two spinors ϕ,ψ ∈ Sn we set

〈ϕ|ψ〉 = 2n[ϕ†ψ]0. (3.7)

With this choice of spinor space and Hermitian product the main results of Sect. 2 that
we need for representing qubits and quantum gates in a complex Clifford algebra read
as follows.

Proposition 3.7 Spinor space Sn ⊂ C2n given by (3.6) together with Hermitian prod-
uct (3.7) form a Hilbert space of dimension N = 2n with an orthonormal basis

|i1 · · · in〉 = ( f †1 )i1 · · · ( f †n )in I , (3.8)

where i1, . . . , in ∈ {0, 1}. Unitary transformations are given by left multiplications
by unitary elements, i.e. elements of C2n such that λ†λ = 1.
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Proof The proposition follows from the constructions described in Sect. 2, we only
need to check the orthonormality of basis elements (3.8). For ik, jk ∈ {0, 1}, where
k = 1, . . . , n, the Hermitian product of two basis elements is given by

〈 j1 · · · jn|i1 · · · in〉 = 2n[I †( fn) jn · · · ( f1) j1( f †1 )i1 · · · ( f †n )in I ]0
by definition. Let us prove the orthogonality first. Assume ik = 0 and jk = 1 for some
k. Since the Witt basis element fk anti-commutes with elements f� and f †� for each
� �= k by (2.3), the previous formula can be expressed in a form ±2n[I † · · · fk I ]0 and
it vanishes since fk I = 0 by (2.3) and (2.4). Similarly, if ik = 1 and jk = 0, then
the above formula for Hermitian product vanishes since it contains factor I † f †k = 0.
Hence the Hermitian product vanish if ik �= jk for some k and the the orthogonality
is proven. To prove the normality we notice that ( fk)ik ( f

†
k )ik = Iik is an idempotent

commuting with all elements f�, f †� , where � �= k, and all idempotents Ii� . Hence we
get

〈i1 · · · in|i1 · · · in〉=2n[I †( fn)in · · · ( f1)i1( f †1 )i1 · · · ( f †n )in I ]0=2n[I † · · · Ii� · · · I ]0,

where Ii� are idempotents such that i� = 1.The primitive idempotent I satisfies I † = I
and it also satisfies Ii� I = I for all � since it is given by product of all such commuting
idempotents, namely I = I1 · · · In by definition. So we compute

〈i1 · · · in|i1 · · · in〉 = 2n[I ]0 = 2n[I1 · · · In]0 = 1,

where the last equality follows from the decomposition of idempotents into grade
components. Namely, we have Ik = 1/2 + fk ∧ f †k and the geometric product of

fk ∧ f †k with elements not containing fk neither f †k either vanishes or yields an
element of grade at least two. �

Remark 3.8 Note that we chose MSB bit numbering for n-qubits. The choice of the
LSB bit numbering would lead to different but isomorphic representations in C2n .

However an explicit description of a general unitary element in C2n representing a
n-qubit gate similar to the description of a general single qubit gate given in Corollary
3.5 is possible, it is more sophisticated and thus not helpful. The same happens in
matrix representation and it reflects the complexity of unitary group U (N ). On the
other hand, given a specific n-qubit gate its representation in C2n is obtained by
rewriting the defining formula in terms of projection operators in Dirac formalism via
identification of n-qubit states (3.8). To make it clear we elaborate some examples for
n = 2 in more detail.

Example 3.9 In the case of a 2-qubit we work in Clifford algebra C4 of dimension is
24 = 16. Using the Witt basis f1, f †1 , f2, f †2 of C4 we define a primitive idempotent

I = f1 f
†
1 f2 f

†
2 which gives rise to spinor space S2 = C4 I of dimension 22 = 4 with

an orthonormal basis

|00〉 = I , |10〉 = f †1 I , |01〉 = f †2 I , |11〉 = f †1 f †2 I
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Fig. 2 2-qubit gates CNOT, CZ
and SWAP respectively

Using this representation of basis states and the definition of Hermitian conjugation
we can form 16 projection operators, e.g. |00〉〈00| = I I † = I , |00〉〈01| = I I † f2 =
I f2 = f1 f

†
1 f2, etc. Specific 2-qubit gates are then formed by a complex linear com-

binations of these elements in C4. We demonstrate the functionality of the spinor
representation on 2-qubit gates known as CNOT, CZ and SWAP [21], see the dia-
grammatic descriptions of these gates in Fig. 2.

f1 f
†
1 |00〉 = f1 f

†
1 f1 f

†
1 f2 f

†
2 = I = |00〉,

f1 f
†
1 |01〉 = f1 f

†
1 f †2 f1 f

†
1 f1 f

†
1 = f †2 I = |01〉

We systematically use Grassmann and duality identities for Witt basis elements,
identity I I † = I in particular.

λCNOT = |00〉〈00| + |01〉〈01| + |11〉〈10| + |10〉〈11|
= I + f †2 I f2 + f †1 f †2 I f1 + f †1 I f2 f1

= f1 f
†
1 f2 f

†
2 + f1 f

†
1 f †2 f2 − f †1 f1 f

†
2 − f †1 f1 f2

= f1 f
†
1 − f †1 f1( f

†
2 + f2),

λCZ = |00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|
= f1 f

†
1 + f †1 f1( f2 f

†
2 − f †2 f2),

λSWAP = |00〉〈00| + |11〉〈11| + |10〉〈01| + |01〉〈11|
= f1 f

†
1 f2 f

†
2 + f †1 f1 f

†
2 f2 + f †1 f2 − f1 f

†
2 .

3.3 Tensor product of gates

To describe effectively quantum logic circuits in the complex Clifford algebra, it
remains to discuss representations of parallel quantum gates, i.e. representations of
tensor product of gates. First of all we realize that the representation of tensor products
of states is already determined byProposition 3.7.Namely, an-qubit |i1 · · · in〉 = |i1〉⊗
· · ·⊗|in〉 is in the Clifford algebra represented by geometric product of representations
of individual qubits. Hence a tensor product |ϕ〉 ⊗ |ψ〉 is represented by geometric
product ϕψ , where the spinors ϕ,ψ are assumed to lie in disjoint vector spaces viewed
as two orthogonal subspaces of their union. Now consider an action of a tensor product
of gates λ ⊗ μ given by unitary elements λ,μ of the Clifford algebra on such a state.
The resulting state λϕ⊗μψ is represented by λϕμψ which is different from λμϕψ in
general due to the skew-symmetry of the geometric product. Namely, for two blades
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eA, eB determined by disjoint multi-indices A, B we have

eAeB = (−1)|A||B|eBeA.

and so the Clifford algebra has the structure of a superalgebra. Hence the geometric
product does not represent the ordinary tensor product but it represents the super tensor
product. It has the same structure as a vector space but with the multiplication rule
determined by

(eAeB)(eCeD) = (−1)|B||C|(eAeC )(eBeD) (3.9)

on blades. Consequently, the geometric product identifies complex Clifford algebra
for n-gates with the super tensor product of Clifford algebras for single qubit gates.
The ordinary ungraded tensor product λ1 ⊗ · · · ⊗ λn of gates λk from distinct copies
of C2 is in Clifford algebra C2n represented by λ1 · · · λn only up to the sign. Although
this sign depends on the n-qubit on which we act by (3.9) in general, it is completely
determined by the set {λ1, . . . , λn} in the case that λk for each k = 1, . . . , n is one of
the basis elements of C2

λk ∈ { fk f †k , f †k fk, fk, f †k }. (3.10)

Proposition 3.10 A tensor product λ1 ⊗ · · · ⊗ λn, where λk ∈ { fk f †k , f †k fk, fk, f †k }
for each k = 1, . . . , n, is represented by geometric product (−1)sλ1 · · · λn, where the
sign is determined by the cardinality of the sets Si , such that s = ∑

i |Si |, where

Si = {� < i : λl = f� or λ� = f †� f�} in the case if λi = fi or λi = f †i . (3.11)

Proof A n-qubit ψ1 ⊗ · · · ⊗ ψn is represented by geometric product ψ1 · · ·ψn of
mutually orthogonal spinors ψk by (3.8). Representation of a qubit obtained upon the
action of λ1 ⊗ · · · ⊗ λn on this n-qubit is given by

λ1ψ1 · · · λnψn = (−1)pλ1 · · · λnψ1 · · · ψn

since λk, ψk are orthogonal to λ�, ψ� for k �= �. Roughly speaking, the sign is deter-
mined by how many times we need to commute to get all elements λk to the left hand
side. Thus it depends on spinors ψ�, � < k which are combinations of components of
grade one or two in general. Only the commuting with grade one components does
change the sign. However the grade one spinors are multiples of f †� and they are anni-

hilated by all elements of C2n except elements λ� = f� and λ� = f †� f� which act
nontrivially. Hence the number of commutation steps that push λk to the left is equal
to the number of such elements λ�, � < k. �

Example 3.11 Let us construct 2-qubit gates X⊗Y and Y⊗X according to Proposition
3.10. First we write these gates as a sum of tensor products of basisWitt basis elements
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and then for each such summand we compute the cardinality of set S giving the sign
of the corresponding geometric product.

X ⊗ Y = i( f †1 ⊗ f †2 − f †1 ⊗ f2 + f1 ⊗ f †2 − f1 ⊗ f2)

= i( f †1 f †2 − f †1 f2 − f1 f
†
2 + f1 f2)

Y ⊗ X = i( f †1 ⊗ f †2 + f †1 ⊗ f2 − f1 ⊗ f †2 − f1 ⊗ f2)

= i( f †1 f †2 + f †1 f2 + f1 f
†
2 + f1 f2)

Let us assume even more simple example of a X -gate with a parallel qubit without any
gate. If the gate is acting on the first qubit we get a resulting 2-qubit gate X ⊗ id = X1.
However, acting on the second qubit we need to write the identity representation as
1 = f1 f

†
1 + f †1 f1 since idempotent K1 = f †1 f1 makes the change of sign in contrast

to idempotent I1 = f1 f
†
1 ,

id⊗X = (I1 + K1) ⊗ X2 = I1X2 − K1X2 = f1 f
†
1 ( f †2 + f2) − f †1 f1( f

†
2 + f2).

The representations of controlled gates from Example3.9 can be constructed from
tensor product of single qubit gates as follows.

λCNOT = I1 ⊗ 1 + K1 ⊗ X2 = I1 − K1X2

λCZ = I1 ⊗ 1 + K1 ⊗ Z2 = I1 + K1Z2

Example 3.12 The spinor space S3 representing states of 3-qubits has dimension 23 =
8 in Clifford algebra C6 of dimension 26 = 64. Using the primitive idempotent (3.5)
and the orthonormal basis representation (3.8) in terms of the Witt basis the Toffoli
gate, see [21], is represented by

λCCNOT = (I1 ⊗ I2 + I1 ⊗ K2 + I2 ⊗ K1) ⊗ id+K1 ⊗ K2 ⊗ X3

= I1 I2 + I1K2 + I2K1 + K1K2X3 = 1 − K1K2 + K1K2X3

= 1 + f †1 f1 f
†
2 f2( f3 + f †3 − 1).

λCSWAP = I1 ⊗ id+K1 ⊗ λSWAP

= I1 + K1(I2 I3 + K2K3 + f †2 f3 − f2 f
†
3 )

= f1 f
†
1 + f †1 f1( f2 f

†
2 f3 f

†
3 + f †2 f2 f

†
3 f3 + f †2 f3 − f2 f

†
3 )

4 Quantum computing in real Clifford algebras

Accidental isomorphism can be used to formulate intrinsically complex quantum com-
puting in a real framework.Weshow twowayshow to see aqubit in realClifford algebra
G3, i.e the GA induced by the standard euclidean inner product of signature (3, 0).The
first approach appears in literature, see [6, 9, 19], and describes qubit states as even
elements in this algebra or equivalently as unite quaternions. The second approach is
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new and follows from the complex representation of qubits described above. For the
other known concepts see [12, 15, 22]. We also mention how to deal with multiple
qubits and multiple qubit gates in the real case.

4.1 A quaternionic qubit

The transition from complex to real framework which appears in literature is based
on the well known coincidental isomorphism of Lie algebras su(2) ∼= so(3), or more
precisely, on the corresponding isomorphism of Lie groups

SU (2) ∼= Spin(3), (4.1)

and the isomorphismof these groupswith the group of unite quaternions.We can easily
describe these isomorphisms explicitly by realizing Lie algebra so(3) as bivectors in
Clifford algebra G3 and Lie group Spin(3) as elements of even grade in G3. Namely,
in terms of Pauli matrices the Lie algebra isomorphism can be defined by mapping
iCσk �→ iσk, k = 1, 2, 3, where we denote the usual complex unite by iC in order to
distinguish from pseudoscalar i = σ1σ2σ3 in G3, while σk on the right hand side is
seen as a vector in G3 satisfying σ 2

k = 1. Consequently, using the Einstein summation
convention, we get a Lie group isomorphism (4.1) of a form

(
a0 + a3iC a2 + a1iC

−a2 + a1iC a0 − a3iC

)

�→ a0 + a1σ2σ3 + a2σ3σ1 + a3σ1σ2 = a0 + akσ ∗
k

(4.2)

where the coefficients a0, a1, a2, a3 ∈ R and σ ∗
k = σki = iσk is the duality defined

by pseudoscalar i = σ1σ2σ3. Assigning the quaternionic unites to σk , k = 1, 2, 3,
defines an isomorphism with unite quaternions. A general state of a qubit is identified
with the first column of the matrix on left hand side, thus in the real Clifford algebra
G3 is represented by

|ψ〉 =
(

a0 + a3iC
−a2 + a1iC

)

↔ ψ = a0 + akσ ∗
k

In particular, the standard computational basis (1, 0) and (0, 1) in C2 is in the real
Clifford algebra formulation represented by

|0〉 = 1 and |1〉 = −iσ2 = σ1σ3, (4.3)

respectively. The identification (4.2) also determines explicit formulas for a Hermitian
inner product and a representation of Pauli matrices on even subalgebra G0

3, namely
for ϕ,ψ ∈ G0

3 we have

〈ϕ|ψ〉 = [ϕ̃ψ]0 − [ϕ̃ψσ1σ2]0iC, (4.4)

σ̂k |ψ〉 ↔ σkψσ3. (4.5)
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These formulas can be explained by viewing the unitary group SU (2) as SO(4) ∩
GL(2, C), i.e. as the group of orthogonal transformations with respect to a real scalar
product of signature (4, 0) commutingwith an orthogonal complex structure. A choice
of a scalar product and a complex structure on even elements G0

3 then defines an
Hermitian inner product on this space by a standard construction and thus defines an
isomorphism (4.1). In our case, the scalar product is given by (ϕ, ψ) = [ϕ̃ψ]0 and the
complex structure J is defined by Jψ = ψiσ3 = ψσ1σ2. Indeed, for such a choice
the Hermitian product (4.4) is constructed as

〈ϕ|ψ〉 = (ϕ, ψ) − (ϕ, Jψ)iC.

The action of Pauli matrices in G0
3 given by (4.5) keep the scalar product invariant and

commutes with the complex structure and thus keeps this Hermitian product invariant.

Remark 4.1 This point of view also allows to see the freedom of quaternionic repre-
sentation of qubits. Namely, choosing a different complex structure or modifying the
scalar product on G0

3 would lead to an isomorphism (4.1) different from (4.2) lead-
ing to representations of computational basis, Hermitian product and Pauli matrices
different from (4.3), (4.4) and (4.5).

The reality of this qubit representation implies that multiple qubits are represented
in a quotient space defined by so called correlator. Namely, representing qubits in the
real geometric algebra G+

3 the space of n-qubits is G+
3 ⊗ · · · ⊗ G+

3 instead the tensor
power of n copies of C2. However this is the complex tensor product according to
axions of the quantummechanics. If wewant to have a fully real description, including
the real tensor product, we need to identify complex structures Jk = iσ k

3 = σ k
1 σ k

2
(representing the multiplication by complex unite) in all copies. This can be done by
introducing the n-qubit correlator

En =
n∏

k=2

1

2
(1 − iσ 1

3 iσ
k
3 ).

Indeed, this element satisfies En Jk = En J� for all k, � = 1, . . . , n and thus it defines
a quotient space G+

3 ⊗ · · · ⊗ G+
3 /En with a complex structure Jn = En Jk = Eniσ k

3 .
Multivectors belonging to this space can be regarded as n-qubit states.

4.2 A real complex qubit

Anotherway how to describe states of a qubit by a real algebra is to transfer its complex
representation described in Sect. 3.1 via the accidental isomorphism of real algebras

C2 ∼= G3. (4.6)

In order to obtain an explicit representation of a qubit we choose a concrete realization
of this isomorphism. Namely, in terms of theWitt basis ofC2 and an orthonormal basis
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σk of R3 we consider the isomorphism given by mapping

1 �→ 1 iC �→ σ1σ2σ3

f �→ 1
2 (σ1 − σ1σ3) iC f �→ 1

2 (σ2σ3 − σ2)

f † �→ 1
2 (σ1 + σ1σ3) iC f † �→ 1

2 (σ2σ3 + σ2)

f f † �→ 1
2 (1 + σ3) iC f f † �→ 1

2 (σ1σ2 + σ1σ2σ3)

In particular, the complex unite iC ismapped to trivectorσ1σ2σ3 ∈ G3 and the primitive
idempotent I = f f † ∈ C2 is mapped to real idempotent

IR = 1

2
(1 + σ3) ∈ G3.

Using this idempotent the equivalence between the classical description of a qubit as
a complex vector and as an element of G3 based on this isomorphism reads

|ψ〉 =
(
a0 + a3iC
a1 + a2iC

)

↔ ψ = (a0 + a1σ1 + a2σ2 + a3σ1σ2)IR,

where a0, a1, a2, a3 ∈ R. Note that, in contrast to the quaternionic representation
described in the previous section, a qubit is represented by a multivector in G3 con-
taining blades of both even and odd grades in this case. In particular, the computational
basis is given by

|0〉 = IR and |1〉 = σ1 IR. (4.7)

The Hermitian inner product on G3 is given by the transition of the Hermitian prod-
uct on C2 given by (2.2) via isomorphism (4.6). Looking at the prescription of the
isomorphism we see that the Hermitian conjugation of basis elements is mapped to
the reverse of the corresponding images in G3. Hence we have a particularly simple
formula for the Hermitian product in this case, namely for two qubits ϕ,ψ ∈ G3 we
have

〈ϕ|ψ〉 = [ϕ̃ψ]0. (4.8)

Our formula for isomorphism (4.6) yields also a particularly simple formula for the
representation of Pauli matrices, namely

σ̂k |ψ〉 ↔ σkψ. (4.9)

Although this real representation of a qubit is quite elegant, the representation of
multiple qubits is as complicated as in the case of the quaternionic qubit described
in 4.1. Due to its reality we need to use a correlator to identify the multiplication
by complex unite in each slot of the tensor product G3 ⊗ · · · ⊗ G3. Since this is a
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common feature of all real description of qubits we believe that the right way is to use
the complex GA as described in Sect. 3 above.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.
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