
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF TELECOMMUNICATIONS

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ
ÚSTAV TELEKOMUNIKACÍ

REAL-TIME DIGITAL SIMULATION OF GUITAR
AMPLIFIERS AS AUDIO EFFECTS

DOCTORAL THESIS
DIZERTAČNI PRÁCE

AUTHOR Ing. JAROMÍR MAČÁK
AUTOR PRÁCE

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
DEPARTMENT OF TELECOMMUNICATIONS

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH
TECHNOLOGIÍ
ÚSTAV TELEKOMUNIKACÍ

REAL-TIME DIGITAL SIMULATION OF GUITAR
AMPLIFIERS AS AUDIO EFFECTS
ČÍSLICOVÁ SIMULACE KYTAROVÝCH ZESILOVAČŮ JAKO ZVUKOVÝCH EFEKTŮ
V REÁLNÉM ČASE

DOCTORAL THESIS
DIZERTAČNI PRÁCE

AUTHOR Ing. JAROMÍR MAČÁK
AUTOR PRÁCE

SUPERVISOR Ing. JIŘÍ SCHIMMEL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2012

ABSTRACT
The work deals with the real-time digital simulation of guitar amplifiers considered as
nonlinear analog audio effects. The main aim is to design algorithms which are able
to simulate complex systems in real-time. These algorithms are mainly based on the
automated DK-method and the approximation of nonlinear functions. Quality of the
designed algorithms is evaluated using listening tests.

KEYWORDS
Nonlinear dynamic system, real-time digital signal processing, digital simulation, audio
effect, guitar amplifier.

ABSTRAKT
Práce se zabývá číslicovou simulací kytarových zesilovačů, jakož to nelineárních anal-
ogových hudebních efektů, v reálném čase. Hlavním cílem práce je návrh algoritmů,
které by umožnily simulaci složitých systémů v reálném čase. Tyto algoritmy jsou pre-
vážně založeny na automatizované DK-metodě a aproximaci nelineárních funkcí. Kvalita
navržených algoritmů je stanovana pomocí poslechových testů.

KLÍČOVÁ SLOVA
Nelineární setrvačné systémy, zpracování číslicových signálů v reálném čase, digitální
simulace, hudební efekt, kytarový zesilovač.

MAČÁK, Jaromír Real-time Digital Simulation of Guitar Amplifiers as Audio Effects:
doctoral thesis. Brno: Brno University of Technology, Faculty of Electrical Engineering
and Communication, Department of Telecommunications, 2012. 198 p. Supervised by
Ing. Jiří Schimmel, Ph.D.

DECLARATION

I declare that I have written my doctoral thesis on the theme of “Real-time Digital
Simulation of Guitar Amplifiers as Audio Effects” independently, under the guidance of
the doctoral thesis supervisor and using the technical literature and other sources of
information which are all quoted in the thesis and detailed in the list of literature at the
end of the thesis.

As the author of the doctoral thesis I furthermore declare that, as regards the creation
of this doctoral thesis, I have not infringed any copyright. In particular, I have not
unlawfully encroached on anyone’s personal and/or ownership rights and I am fully aware
of the consequences in the case of breaking Regulation S 11 and the following of the
Copyright Act No 121/2000 Sb., and of the rights related to intellectual property right
and changes in some Acts (Intellectual Property Act) and formulated in later regulations,
inclusive of the possible consequences resulting from the provisions of Criminal Act No
40/2009 Sb., Section 2, Head VI, Part 4.

Brno .
(author’s signature)

ACKNOWLEDGEMENT

Firstly I would like to thank to my supervisor Jiří Schimmel for this interesting
topic and for his valuable advices and remarks which I was given during working on
this topic. I also thank to colleagues from my office for inspiring working environment.

Further I would like to thank to Audiffex company for the opportunity to
implement algorithms for the simulation of guitar analog effects in their products,
thanks to Lubor Přikryl, CEO of Audiffex, and to Vladimír Tichý, software developer
of Audiffex.

I have to thank to prof. Udo Zölzer and Martin Holters for the opportunity to
spend three amazing months at Helmut Schmidt University in Hamburg. This visit
inspired me during last stages of my research.

I also have to thank to Oliver Kröning for measuring the tubes from the simulated
preamp and to all who took part in the listening tests.

My greatest thanks belong to my family and girlfriend Dana for support and
patience during writing this thesis.

4

ACKNOWLEDGEMENT

The research was performed in laboratories supported by the SIX project; the registration
number CZ.1.05/2.1.00/03.0072, the operational program Research and Development
for Innovation.

Brno .
(author’s signature)

Faculty of Electrical Engineering
and Communication
Brno University of Technology
Purkynova 118, CZ-61200 Brno
Czech Republic

http://www.six.feec.vutbr.cz

CONTENTS

List of abbreviations 14

List of symbols and math operations 16

Introduction 19

1 State of the Art 20
1.1 Introduction . 20
1.2 Algorithms Overview . 21

1.2.1 Nodal Analysis Simulation Techniques 22
1.2.2 Numerical Integration of Nonlinear Ordinary Differential Equa-

tions . 23
1.2.3 Simulation by Static Waveshaping and Digital Filter Design . 26
1.2.4 State Space Based Approach 28
1.2.5 Nonlinear Wave Digital Filters 31
1.2.6 Volterra Series . 34

1.3 Recent Advances . 37
1.3.1 Advances in State-Space Modeling 38
1.3.2 State-Space Approach for Parametric Circuits 40

1.4 Basic Circuit Component Models for Real-time Audio Effect Simulation 42
1.4.1 Discretized Models of Capacitor and Inductor 43
1.4.2 Diode Model . 44
1.4.3 Transistor Model . 44
1.4.4 Tube Models . 45
1.4.5 Transformer Core Models . 46

2 Goals of Thesis 48

3 Circuit Analysis of Audio Effects 50
3.1 Simulation of Circuits with Audio Transformer 50

3.1.1 Transformer Model . 51
3.1.2 Basic Input Stage with Transformer 55
3.1.3 Push-Pull Tube Amplifier . 62
3.1.4 Automated Incorporation of Transformer Model into DK-method 66

3.2 Simulation of Circuits with Operational Amplifier 72
3.2.1 Incorporation of Operational Amplifier Model into Automated

DK-method . 74
3.3 Further Considerations Regarding DK-Method 81

3.4 Summary . 85

4 Approximation of Implicit Nonlinear Circuit Equations 86
4.1 Precomputation of Nonlinear Systems 86

4.1.1 Precomputation for approximation of nonlinear ODEs 87
4.1.2 Precomputation for approximation of the state-space nonlinearity 89

4.2 Brief Overview of Function Approximation Techniques 91
4.3 Implementation and comparison of approximation of 1-D function . . 91

4.3.1 Non-uniform Grid Interpolation 93
4.4 Approximation of N-D function . 99

4.4.1 Non-uniform grid interpolation 103
4.4.2 Parallel evaluation of interpolations 104

4.5 Customized approximation of transfer function 106
4.5.1 Reshaping of transfer function 106

4.6 Summary . 110

5 Complex System Simulation 111
5.1 Modified Block-Wise Method . 111
5.2 Guitar Tube Amplifier Simulation as a Case Study for Modified Block-

wise Method . 117
5.2.1 Computational Complexity . 123
5.2.2 Simulation Results . 126

5.3 Decomposition of the DK-method nonlinear core 129
5.3.1 Precomputation . 130
5.3.2 Further Look-up Table Size Reduction 131
5.3.3 Simulation Results . 135

5.4 DK-model Decomposition Using Connection Components 138
5.5 Simulation of Circuit with Global Feedback 145
5.6 Summary . 150

6 Quality of Simulation of Audio Effect Circuits 152
6.1 Simulation of the Guitar Tube Preamp Engl E530 152
6.2 Subjective evaluation of guitar tube preamp simulation 159

6.2.1 Results . 161
6.3 Subjective Comparison of Interpolation Techniques 162
6.4 Subjective Comparison of Output Transformer Model 163
6.5 Audible Aliasing Distortion . 163
6.6 Summary . 165

7 Conclusion 166

Author’s Publications 169

Bibliography 171

List of appendices 179

A Interpolation Techniques Comparison 180

B Implementation of Interpolation Formulas 182

C Incidence Matrices for Fender Type Preamp 184

D Incidence Matrices for Marshall Preamp 185

E Incidence Matrices for Marshall Preamp with the Decomposition 187

F K matrix for Marshall Preamp with the Decomposition 189

G Instructions for Listening Tests 190

H Answer Form for Listening Tests 192

I DVD content 195

LIST OF FIGURES

1.1 Block diagrams of Wiener (top), Hammerstein (middle) and Wiener-
Hammerstein nonlinear model. 35

2.1 Block diagram of guitar amplifier . 48
3.1 Model of a transformer with two windings. 51
3.2 Magnetic part of gyrator-capacitor transformer model. 53
3.3 A transformer connected with a symmetrical voltage signal source. . . 55
3.4 Output signal of the input stage circuit. 59
3.5 Hyseresis loop of transformer models used in input stage circuit. . . . 59
3.6 Solution of input stage nonlinear function with Frohlich model. 61
3.7 Solution of input stage nonlinear function with the GC model. 62
3.8 Circuit schematic for push-pull power tubes part of the tube power

amplifier. 63
3.9 Ouput signals of the push-pull amplifier for different transformer models. 64
3.10 Distortion analysis of the push-pull amplifier with the linear model of

the output transformer. 65
3.11 Distortion analysis of the push-pull amplifier with the nonlinear model

of the output transformer. 65
3.12 Stamp of linear transformer model for conductance matrix 68
3.13 Stamp of nonlinear transformer model for the conductance matrix . . 71
3.14 Circuit schematic for the inverting amplifier (left) and comparator

(right). 74
3.15 Transfer function of the inverting amplifier with model of OPA for

real-time processing. 74
3.16 Transfer function of the inverting comporator with model of OPA for

real-time processing. 75
3.17 Solution of the nonlinear equation for the comparator circuit using

DK-method. 78
3.18 Solution of the nonlinear equation for the comparator circuit using

equation (3.115). 78
3.19 Solution of the nonlinear equation for the inverting amplifier. 79
3.20 Circuit schematic of the simple LFO generator. 80
3.21 Transient analysis of the LFO generator simulated with the DK-method. 81
4.1 Circuit schematic for triode tube amplifier. 88
4.2 Computational cost of interpolation algorithms. Measured for one

million of interpolations. 94
4.3 Circuit schematic of the nonlinear core of the Distortion effect. 95
4.4 Approximation of the transfer function of the diode clipper circuit. . . 97

4.5 Error of the approximations of the transfer function of the diode
clipper circuit. 98

4.6 Average error of the approximations of the transfer function of the
diode clipper circuit. 98

4.7 Number of operations required by 𝑁 -dimensional interpolation. . . . 101
4.8 Number of coefficients to be stored for 𝑁 -dimensional interpolation.

Spline interpolation 2 and 3 are the same as well as Linear, Hermite
and Newton are the same. 101

4.9 Computation time of one million 𝑁 -D interpolations. 102
4.10 The transfer function of the tube preamp 107
4.11 Reshaping coefficients dependency on cathode capacitor voltage . . . 109
4.12 Reshaped transfer function of the tube preamp. 109
5.1 Example of decomposition into separate blocks using the modified

block-wise method. 112
5.2 Circuit schematic for typical tube amplifier stage. 113
5.3 Input volt-amper characteristics (top) and resistance (bottom) of tube

amplifier stage. 114
5.4 Transfer function of the tube amplifier stage with different load resistor.114
5.5 Transient analysis of the tube amplifier stages with the nonlinear load

and the constant load. 115
5.6 Comparison of the output signals for different load resistor in the tube

stage connected as the nonlinear load. 116
5.7 Comparison of the output signals of the first tube stage with one and

two tube stages connected in series as the nonlinear load. 117
5.8 Circuit schematic for the guitar preamp with four tube stages and its

decomposition into three blocks. 118
5.9 Circuit schematic of the block 1 of the decomposed tube preamp. . . 120
5.10 Circuit schematic of the block 1 and 2 of the decomposed tube preamp.120
5.11 Approximating functions for the simulation of the system (5.1) . . . 121
5.12 Approximating functions for the simulation of the system (5.1). . . . 122
5.13 Simulation results for a logarithmic sweep signal. The plate voltage

signals of all tubes are displayed. 127
5.14 Comparison between simulation results using the numerical solution

and using approximations for a part of the real guitar riff. Only the
error signals are displayed. 128

5.15 Circuit schematic of the Fender type guitar preamp. 130
5.16 Output signals (top, dashed line for the numerical solution) and the

difference between numerical and approximated solution in the time
domain without the parameter interpolation. 136

5.17 Difference betweenthe numerical and approximated solution in the
time frequency without the parameter interpolation. The numerical
solution (dashed line) is shifted to the right. 137

5.18 Output signals (top, dashed line for the numerical solution) and the
difference between the numerical and approximated solution in the
time domain with the parameter interpolation. 137

5.19 Difference between the numerical and approximated solution in the
time frequency with the parameter interpolation. The numerical
solution (dashed line) is shifted to the right. 138

5.20 Circuit schematic of the Marshall JCM 800 guitar preamp. 139
5.21 Circuit schematic of the Marshall JCM 800 guitar preamp with the

decomposition into blocks. 141
5.22 Output signals (top) and their difference (bottom) for the simulation

of Marshall preamp with and without the decomposition 145
5.23 Circuit schematic of the tube power amplifier. 147
5.24 Frequency response magnitude of the first harmonic component for

different topologies of the circuit for parameter ”Presence” set to zero. 149
5.25 Frequency response magnitude of the first harmonic component for

different topologies of the circuit for parameter ”Presence” set to one. 149
5.26 Frequency response magnitude of measured loudspeaker cabinets –

the Mesa Boogie Rectifier and the Marshall JCM 800. 150
6.1 Comparison of measured and simulated voltage signals at plate termi-

nals of the tubes for input sine wave with the amplitude 0.5 V. 153
6.2 Comparison of measured and simulated voltage signals at plate termi-

nals of the tubes for input sine wave with the amplitude 2 V. 154
6.3 Comparison of measured and simulated frequency responses (for the

first harmonic content). 154
6.4 Spectrogram of the output signal - measured clean channel. 155
6.5 Spectrogram of the output signal - simulated clean channel. 155
6.6 Comparison of measured and simulated voltage signals at plate termi-

nals of the tubes for input sine wave with the amplitude 0.5 V. 156
6.7 Comparison of measured and simulated voltage signals at plate termi-

nals of the tubes for input sine wave with the amplitude 2 V. 157
6.8 Comparison of measured and simulated frequency responses (for the

first harmonic content). 157
6.9 Spectrogram of the output signal - measured crunch channel. 158
6.10 Spectrogram of the output signal - simulated crunch channel. 158

LIST OF TABLES

3.1 Values of circuit components of input stage circuit. 57
3.2 Parameter of Frohlich and GC-model of transformer core. 57
3.3 Parameter of JA-model of transformer core. 58
3.4 Number of iterations of Newton-Raphson method. 58
3.5 Values for circuit elements for push-pull power tubes part of the tube

power amplifier. 63
3.6 Parameter of Frohlich and GC-model of the transformer core for the

transformer Fender NSC041318. 63
3.7 Values of circuit components for the LFO generator. 80
4.1 Computational cost comparison of interpolation algorithms. 93
4.2 Element values for schematic on Figure 4.3 96
4.3 Comparison of the number of data points required for approximation

of diode clipper circuit. 97
4.4 Maximal number of interpolations per sample for 𝑓s = 48 kHz. 102
4.5 Maximal number of interpolations per sample for 𝑓s = 192 kHz. . . . 103
5.1 Values for circuit components for typical tube amplifier stage. 113
5.2 Values for circuit components for the guitar preamp. 118
5.3 Look-up table for simulation of the first block. 122
5.4 Look-up table for simulation of the second and third block. 123
5.5 Computational complexity comparison of the simulations based on

the Newton method – the number of operations. 126
5.6 Computational complexity comparison of the simulations based on

approximations – the number of operations. 126
5.7 Errors for the simulation from Figure 5.14. The plate voltage signal

errors are displayed. 129
5.8 Component values of the Fender type guitar preamp 129
5.9 Ranges of p parameters. 131
5.10 Ranges of K coefficients. 131
5.11 Covariance between precomputed functions and inputs. 132
5.12 Description of the look-up tables – number of intervals 135
5.13 Data size of the look-up tables. 135
5.14 Component values of the Marshall JCM 800 guitar preamp 139
5.15 Component values of the tube power amplifier. 146
6.1 Results of subjective evaluation of preamp simulation. 161
6.2 Results of the comparison of interpolation techniques using the listen-

ing test. 163
6.3 Results of transformer model listening test. 164

6.4 Results of audible aliasing distortion listening test. 164

LIST OF ABBREVIATIONS

ASIO Audio Stream Input/Output

BCT Binary Connection Tree

BE Backward Euler Formula

BJT Bipolar Junction Transistor

DC Direct Current

DSP Digital Signal Processing

FE Forward Euler Formula

FIR Finite Impulse Response

GC Gyrator-Capacitor

GUI Graphical User Interface

IIR Infinite Impulse Response

JA Jiles-Atherton

JFET Junction Field Effect Transistor

KCL Kirchhoff’s Current Law

KVL Kirchhoff’s Voltage Law

LMS Least Mean Square

LHS Left Hand Side

LFO Low Frequency Oscillator

MMF Magneto-Motive Force

MNA Modified Nodal Analysis

ODE Ordinary Differential Equations

OPA Operational Amplifier

PCA Principal Component Analysis

RFP Reflection Free Port

14

RHS Right Hand Side

RK Runge-Kutta

SIMD Single Instruction Multiple Data

SPICE Simulation Program with Integrated Circuit Emphasis

SSE Streaming SIMD Extensions

SVD Singular Value Decomposition

THD Total Harmonic Distortion

TR Trapezoidal Rule

VST Virtual Studio Technology

WDF Wave Digital Filter

15

LIST OF SYMBOLS AND MATH OPERATIONS

A, B, C DK-method matrix

Ao, Bo, Co K-method matrix

𝐵 magnetic flux density

𝐵SAT magnetic flux density in saturation

𝐶 capacitance

D, E, F DK-method matrix

𝑓s sampling frequency

Φ magnetic flux

ΦSAT magnetic flux in saturation

G, H, K DK-method matrix

G conductance matrix

Gr resistor conductance matrix

Gx energy-storing component conductance matrix

𝐺 conductance

𝐻 magnetic force

ℎ𝑁 𝑁 -dimensional impulse response (Volterra kernel)

𝑓() nonlinear function

ℱ magnetomotive force

𝑖, i current, vector of currents

𝑖 index

I identity matrix

𝑖B base current

𝑖C capacitor current, collector current

𝑖E emitor current

𝑖g grid current

𝑖L inductor current

𝑖p plate current

𝑖S saturation current

16

𝑖s screen current

𝑖conn connection current

J Jacobian matrix

𝐿 inductance

𝑙mag length of magnetic path

𝑀 magnetization

𝜇 permeability, tube amplification factor

M conductance matrix

Mx conductance matrix for state variables

Mu conductance matrix for input variables

Mn conductance matrix for nonlinear components

Nn nonlinear component incidence matrix

No outputs incidence matrix

NOPA operational amplifier incidence matrix

Nr resistor incidence matrix

Nt transformer incidence matrix

Nu inputs incidence matrix

Nv variable component incidence matrix

Nx energy-storing component incidence matrix

𝑂() computational complexity

𝑝 complex Laplace parameter

p input variable for DK-method

R𝑁 𝑁 -dimensional Eucleidian space

𝑅 resistance

ℛ reluctance

𝑆 cross-section area

S conductance matrix

SOPA conductance matrix with operational amplifier model

St conductance matrix with transformer model

17

𝑇 sampling period

𝑥 input variable, state variable

u input vector

x state vector

ẋ time derivation of state vector

𝑣, v voltage, vector of voltages

𝑣T thermal voltage

𝑧 complex parameter in Z domain

18

INTRODUCTION

Digital signal processing influences many fields of human interests these days and
together with the progress of computer science it addresses many of new applications.
One of these applications is digital audio signal processing in computers. Original
analog records on magnetic tapes have been replaced with digital records on hard
disk drives in recording studios. Furthermore, an additional processing of audio
signals by audio effects, such as compressors and equalizers, is replaced by digital
signal processing using real-time digital audio effects. Basically, the digital audio
effects work similarly as their analog prototypes, but the output audio signal usually
differs. Some musicians claim that the digital audio effects sound too accurate and
thin, and therefore they prefer the analog audio effects. Because of this, there is a big
effort to simulate these analog audio effects digitally, including their imperfections,
such as nonlinear distortion of audio signals, nowadays. A special category of these
audio effects is built by simulations of guitar amplifiers and effects where nonlinear
distortion is required and the aim is to get the same nonlinear distortion like the
analog prototypes have.

These new technologies can be used in recording studios, either home or profes-
sional, but they are also part of audio multi-effects for live performance and even
guitar amplifiers with digital signal processors can be found on the market. The
biggest advantage is universality of these systems – simulations of several analog
devices, which are often large and expensive, can be inside one system. The only one
disadvantage is that the simulation is still insufficiently accurate, but this improves
with the new algorithms and more powerful processors.

Simulated devices can be usually split into two categories. The first one contains
linear systems and analog devices which have very small amount of nonlinear distor-
tion. To simulate these devices, quite simple and common techniques, such digital
filters designed according to analog prototypes, can be used.

The other category contains strongly nonlinear systems. To analyze and simulate
this type of systems, more complex techniques, which often have enormous computa-
tional demands, must be used. Therefore, there is effort to find such algorithms that
will lead to the same audio perception as the simulated nonlinear system, while the
computational demands will stay relatively low to be workable in real-time.

19

1 STATE OF THE ART

An overview of algorithms for simulation of audio effects will be given in this chapter.
Basic circuit components used for these simulations will be described as well. Finally,
recent advances in improvement of the algorithms will be mentioned.

1.1 Introduction

Development of algorithms for simulation of analog electronic circuits has begun
with computer programs for analysis of the electronic circuits. Program Simulation
Program with Integrated Circuit Emphasis (SPICE) [13] is a typical example of such
programs. This program and its derivations have been developing since 1973. They
have undergone many improvements and optimizations since then. However, the
main algorithm, which is analysis of circuit nodes and numerical solution of circuit
equations, remains the same. The time-domain simulation of nonlinear audio effects
here is related to the transient analysis of given circuits. These programs nowadays
allow simulation of majority of electronic circuits (analog, digital, audio circuits,
power circuits, etc.), but this generality of algorithm has enormous computational
demands and thus, they are not suitable for real-time simulations.

In the case of audio effects, the generality of the simulation algorithm is not
necessary. In spite of generality, attention is rather paid to several typical circuits
which can be simplified, approximated and optimized without loosing the same audio
perception. Therefore, it is important to understand how the analog audio effects
work in order to design proper simplifications (e.g. division into several separate
blocks according to their function). The simplified blocks can be then simulated
using different algorithms exploiting benefits which different algorithms provide.

A block that implements a nonlinear function is the basic block of all nonlinear
algorithms. This nonlinear block can be implemented as memoryless (static) or
with memory (dynamic). Both cases produce higher harmonics which spread the
signal spectrum [14]. A digital signal which originally complied Nyquist theorem now
contains higher harmonics which do not comply Nyquist theorem anymore, which
results in generation of aliasing distortion. Some algorithms are designed in such
way that aliasing distortion can be removed by connecting a low-pass filter before
the block with the nonlinear function which will filter out all higher frequencies
which would cause aliasing distortion [14]. Generally, it is possible to reduce aliasing
distortion using the over-sampling technique – the input signal is several times up-
sampled, then processed by the nonlinear function and finally down-sampled [14, 15].
But even this technique will not remove aliasing distortion completely, because when
one simulates extreme nonlinearities, where Fourier series goes to infinitive, the

20

over-sampling factor would have to be very high and so would be computational
demands. In this case, one has to make use of psychoacoustics and design the
over-sampling factor in such way that aliasing distortion will be masked with the
masking threshold. This approach requires thorough analysis of the algorithm for
given set of input signals and the over-sampling factor can be designed on the basis
of listening test or psychoacoustic models of masking. Attempts to analyze aliasing
distortion using the masking effect can be found in [16, 17].

1.2 Algorithms Overview

Generally, the algorithms for simulation of analog audio effects can be classified into
several categories – a black box approach or a white box approach, with linear or
nonlinear transfer function, etc. Good overview can be found e.g. in literature [18].
The black box or white box approach differ in the fact whether the inner structure
of simulated systems is known. In case of the black box approach (uninformed),
the inner structure is unknown and all the necessary information for designing the
simulating system is extracted only from relation between the input and output
signal. This approach is often used with linear algorithms that are foremost based
on digital linear filters and the only task here is to determine filter coefficients, which
can be done by linear system identification task using e.g. Least Mean Square (LMS)
algorithm or by measuring the impulse response of the unknown system, which
enables direct derivation of Finite Impulse Response (FIR) filter coefficients. Further,
it is possible to reduce computational costs by approximation of the FIR filter
frequency response by Infinite Impulse Response (IIR) filter. However, the black
box approach can be used also for simulation of nonlinear systems. In this case, the
core of the simulation algorithm is usually built with Volterra series equation and
the unknown is a set of coefficients for this nonlinear filter. Further information are
mentioned in chapter 1.2.6.

Although the black box approach offers universal and accurate methods for
simulation of analog audio systems, its use is limited, especially for circuits with
variable circuits components, because simulation of such systems requires measuring
and storing data for different values of parameters which results in large look-up
tables. Even though it can be solved by linear interpolations e.g. as in [19], white
box methods are more convenient in this case.

The basic feature of the white box methods is that they know the inner structure
of the simulated system. Talking about the analog audio effects, the inner structure
of the system is directly the circuit schematic of the system and thus these types
of algorithms are known as circuit based simulation techniques where individual

21

algorithms differ in processing of the circuit schematic. This type of algorithms is
aim of this thesis. Therefore, these algorithms will be further described in following
text.

1.2.1 Nodal Analysis Simulation Techniques

The analysis of electronic circuits makes use of Kirchhoff’s laws: Kirchhoff’s Current
Law (KCL) and Kirchhoff’s Voltage Law (KVL). There are several techniques for
the analysis of electronic circuits, but the loop analysis of electronic circuits with
unknown loop currents and the nodal analysis of electronic circuits with unknown
nodal voltages are the most often used techniques for the analysis of complex systems.
Both of them are suitable for different types of electronic circuits. Although the loop
analysis is more straightforward and convenient for simple circuits, it requires the
use of graph theory for determining loops in more complicated circuit (the loops
must be independent, otherwise it results in overdetermined system) and therefore it
is not suitable for automated circuit analysis with computer aided systems. On the
contrary, the nodal analysis requires determination of unknown independent nodal
voltages and one reference node, which is the ground node, and this procedure can
be easily automated and therefore many of electronic circuit simulators are based on
this method. The nodal analysis uses the KCL

0 =
∑︁

𝑖𝑛 (1.1)

for each node 𝑛 except the reference, which results in the matrix system description

Gv = i (1.2)

with current input sources i on the Right Hand Side (RHS), the unknown voltage
vector v and the conductance matrix G which consists of conductances of passive
circuit components and also contains linearized active circuit components. Obtaining
the G matrix is possible using so called stamps of the circuit components and it is
not further addressed here, since it can be found in various literature [20, 21, 22, 23].
However, it should be noticed here that models of accumulating components have to
be discretized in time-domain since the time-domain analysis is the main objective
here. The stamps for these components can be found in [20, 21, 22] and the models
will be further reviewed in chapter 1.4. Each accumulating component has then
a current contribution for the RHS which corresponds to the accumulating component
state.

Nonlinear circuit components, namely a diode, a triode, a transistor etc., are
expressed as voltage controlled current sources placed on the RHS in form of

𝑖 = 𝑓(v) (1.3)

22

where 𝑖 is the controlled current, 𝑓 is the nonlinear function describing behavior of
the component model and v is the vector of controlling voltages.

The real circuit sources are the last contribution to the sources on the RHS.
However, the nodal analysis can handle only the ideal current sources, while the
audio effect circuits usually contain ideal voltage sources. Therefore the Modified
Nodal Analysis (MNA) is used instead of the nodal analysis method. The MNA
extends the system (1.2) by unknown currents of ideal voltage sources on the Left
Hand Side (LHS) while input voltages are placed on the RHS. The resulting equation
describing the discretized nonlinear system in the matrix form is according to [20, 22]

Mv[𝑛] = Mxx[𝑛− 1] + Muu[𝑛] + Mni(v)[𝑛] (1.4)

where M, Mx, Mu and Mn are conductance matrices of the MNA method, x is the
state of the system in the previous sample period, u is the vector of inputs (currents
or voltages) and v is the vector of unknown nodal voltages and currents of ideal
voltage sources, i is the vector of nonlinear currents and 𝑛 denotes the time index.
Solving of equation (1.4) leads to numerical solving with the residual function

0 = Mxx[𝑛] + Muu[𝑛] + Mni(v)[𝑛]−Mv[𝑛] (1.5)

and after solving to state update by

x[𝑛 + 1] = M−1
x (−Muu[𝑛]−Mni(v)[𝑛] + Mv[𝑛]) . (1.6)

Using this approach and accurate models of components, the great accuracy of
the simulation can be achieved. However, since the equation (1.5) is in implicit
form and moreover, sizes of matrices M, Mx, Mu and Mn depend on the number
of circuit nodes, this approach is not suitable for real-time audio processing due to
high computational costs. However, this algorithm can serve as a baseline to which
all algorithms working in real-time should converge.

1.2.2 Numerical Integration of Nonlinear Ordinary Differ-
ential Equations

Numerical integration of nonlinear Ordinary Differential Equations (ODE) is closely
related to the previous chapter because the equation (1.4) is essentially an ODE which
has already been discretized using Backward Euler Formula (BE) or Trapezoidal Rule
(TR) (see later in this chapter and chapter 1.4) where component-wise discretization
has been performed.

The numerical integration of ODE is a widespread known problem and has
been aimed in various literature over the last three decades and therefore, it is not

23

addressed here. However, the usage of numerical integration for real-time simulation
of audio effects was studied intensively in literature [24, 25, 22] with focus on different
numerical integration formulas: implicit integration formulas, represented by BE
of the first and second order and TR, which all require a numerical algorithm to
solve the nonlinear equation because these formulas generate delay free loops, further
semi-implicit methods which require one iteration of the numerical algorithm to solve
the nonlinear equation and which were represented by semi-implicit BE formula and
finally explicit methods represented by Forward Euler Formula (FE) and Runge-
Kutta (RK) method of the fourth order which do not require the use of the numerical
algorithm to solve the nonlinear equation because these formulas depend only on
previous system states.

The integration formulas were tested in simulation of a diode clipper circuit,
which is the important part of many guitar distortion effect pedals. To apply different
integration formulas, the nonlinear circuit equation should be in form

ẋ = f(x, u) (1.7)

where x is the state vector and u is the input vector and ẋ = dx
d𝑡

. Various input
signals were used to investigate computational cost, accuracy of the solution as well
as stability of the formulas. It was found that, although the explicit formulas are
stable for some types of ODEs like in [26], the implicit formulas must be generally
used in order to ensure the stability of the solution. This was examined in [22]
where there is stated that the solution stability of explicit formulas is related to the
ratio between largest values of eigenvalues of (1.7) and the sampling frequency value.
Therefore, for the given sampling frequency, there is a limit on the largest value of
negative eigenvalue which depends on operating point and therefore these formulas
are not stable in the whole range of input conditions unless the function f(x, u) from
(1.7) is compressive, which is the case of [26]. On the contrary, implicit formulas
place no limits on the maximum of values of eigenvalues and therefore they can work
with low sampling frequencies. If there is no constrain on the value of the sampling
frequency for the bounded solution, then such method can be denoted as stiff stable.
It implies that explicit formulas are not stiff stable.

Computational costs and accuracy of the solution are thus closely related to
the stability of the solution. Although explicit formulas offer constant and low
computational cost, the requirement for enormous sampling frequencies makes them
unpractical for usage in simulations of electronic circuits in real-time. Computational
cost of implicit formulas is related to the number of iterations of a numerical nonlinear
solver (e.g. Newton-Raphson method) and differs for different input signals. Lower
computational costs can be usually obtained for signals with low frequency content.
To decrease the difference in computational cost for signals with the low frequency

24

content and the high frequency content, the oversampling can be applied which
further reduces aliasing distortion. Implicit formulas are capable of working in
real-time for some simple audio effect circuits. However the computational cost is
not spread equally and some peaks of the computational cost can cause drop-outs
of the output signal if the computational power of the computational system is
limited. Further, although implicit methods are stable, the stability of the solution
also depends on the stability of the used numerical nonlinear solver. The commonly
used Newton-Raphson solver converges very fast if the initial solution is close to the
correct solution, otherwise it can diverge. The homotopy method was developed
to cope with this problem. It was originally used in paper [27] to ensure a global
convergence for finding of DC operating point of a nonlinear circuit and further it was
used in [22] to ensure a global convergence of the Newton-Raphson method. However,
this introduces additional computational cost of the algorithm. The semi-implicit
methods seem to be trade-off providing constant computational cost and stability,
however according to [22], they introduce artificial sound artifacts at high frequencies.

Based on the comparison of integration formulas made in [22], it is possible to state
that BE and TR are applicable for real-time simulations if sufficient computational
power is available. Both methods can also be exploited during the component-wise
discretization of circuits components and therefore they will be mentioned here. The
BE formula is given by

𝑥[𝑛] = 𝑥[𝑛− 1] + 𝑇 𝑥̇[𝑛] (1.8)

where 𝑇 is the sampling period and 𝑥̇ is time derivative of 𝑥. In terms of digital
signal processing, the time derivative can be expressed as

𝑥̇[𝑛] = 1− 𝑧−1

𝑇
𝑥[𝑛] (1.9)

which is Backward Euler discretization formula. The TR integration formula is given
by

𝑥[𝑛] = 𝑥[𝑛− 1] + 𝑇

2 (𝑥̇[𝑛] + 𝑥̇[𝑛− 1]) (1.10)

and TR discretization formula is then

𝑥̇[𝑛] = 2
𝑇

1− 𝑧−1

1 + 𝑧−1 𝑥[𝑛] (1.11)

that is closely related to Bilinear transform, often used for discretization of an analog
transfer function to a digital one. To compare both methods, the BE provides good
frequency warping properties but introduces numerical damping which can affect
frequency response, while TR does not introduce artificial damping, however there is
frequency warping due to mapping of infinitive 𝑠-plane to 𝑧-plane unit circle [28, 22].

25

1.2.3 Simulation by Static Waveshaping and Digital Filter
Design

Algorithms based on static waveshaping on the contrary to the numerical integration
minimize overall computation costs. This type of algorithms was designed in corre-
spondence with low computational power of computational systems and even today
they can find their employment in Digital Signal Processing (DSP) applications. The
detailed overview of these algorithms can be found in [18].

A nonlinear behavior of algorithms is specified by a simple mapping between
input and output signals given by

𝑦[𝑛] = 𝑓(𝑥[𝑛]) (1.12)

where 𝑓(𝑥) is the nonlinear transfer function. Since this function is time-invariant,
these types of algorithms are called static waveshapers. The shape of the transfer
function 𝑓(𝑥) depends on the particular circuit to be solved (used circuit components
and topology). The transfer function can be obtained by a numerical solution of the
given circuit, from output data of programs for electronic circuits simulation or by
a measurement of the real circuit.

The numerical solution of the circuit usually gives the best results, however, it
is necessary to have sufficiently accurate models of nonlinear circuit components as
has already been stated in previous chapters. In order to obtain the function 𝑓(𝑥),
the circuit has to be solved for different input signal values and then the transfer
function is obtained from the input-output signal relation. Because the circuits
usually contain accumulative components, it requires DC solution of the given circuit.
This can be done by omitting accumulative components or by setting the state
derivatives in circuit equations to zero as mentioned in [22]. Determination of the
transfer function 𝑓(𝑥) from output data of programs for electronic circuits simulation
is discussed in [29]. A decaying sine burst with alternating polarity was fed at the
input of the investigated circuit. Samples of the input and output signals are then
sorted according to their values in order to get the transfer function. The same way
can also be used when a real circuit is measured. However, by this measurement, the
transfer function is obtained only for harmonic stable state and therefore, the results
are valid only for circuits without accumulating components. In case of dynamic
circuits, the transfer function can significantly vary for different frequencies.

If the shape of the transfer function 𝑓(𝑥) is known, it is necessary to find such
function (1.12) which would approximate the transfer function. Various functions
𝑓(𝑥) approximating different electronic circuits can be found in literature [14, 18]. All
these functions approximate one typical transfer function and they are not suitable
for universal usage. If a general shape of the transfer function is desired, the shape

26

can be approximated by the polynomial function

𝑓(𝑥) =
𝑁∑︁

𝑖=0
𝑏𝑖𝑥

𝑖 (1.13)

where coefficients 𝑏𝑖 are Taylor polynomial coefficients [14] and they can be estimated
from the Taylor series. It is also possible to determine these coefficients from the
output signal spectrum [15]. This implementation is suitable for the simulation
of circuits with smaller nonlinearity or exciter audio effects where it is possible to
change ratio of higher harmonics. When the polynomial approximation (1.13) is
used in wider range of the input signal, polynomials of very high orders have to
be used. However, it is possible to approximate the transfer function by piecewise
approximation. The combination of linear and polynomial functions is mentioned in
[1]. The transfer function is given by

𝑓(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑎 𝑥 < 𝑥1∑︀𝑁

𝑖=0 𝑏𝑖𝑥
𝑖 𝑥 ≥ 𝑥1 ∧ 𝑥 ≤ 𝑥2

𝑐 𝑥 > 𝑥2.

(1.14)

Naturally, it is desired to have a continuous transfer function. If the points 𝑥1, 𝑥2 are
inflection points of the polynomial, the first order continuity is achieved. Very good
results can be achieved using interpolation of data stored in look-up tables, which
was used in several algorithms mentioned in [18] and further in [30, 31, 17, 20, 21, 22].
Mostly, the linear interpolation was used. The cubic spline interpolation of the
transfer function was used in [2].

Nevertheless, simulated circuits often contain frequency dependent circuit com-
ponents which influence the frequency response of the simulated circuit. Because
the static transfer function is not capable to change the frequency response, these
algorithms must be supplemented with additional digital filters connected before
and behind the nonlinear function. There is again the whole variety of algorithms
[18] implementing the static transfer function together with digital filters but the
accuracy, which would be comparable with the numerical integration of the circuit
ODEs, was not accomplished. The explanation why the simulation based on the
static transfer function and digital filters is not accurate is given in [22].

Although these algorithms are not as accurate as the numerical integration,
they are useful for simulation of complex systems where the numerical integration
would require extreme computation power to be workable in real-time. In such case,
the complex circuit of the audio effect is divided into linear and nonlinear parts
and the whole system is simulated using a series of digital filters and memoryless
nonlinear functions. This approach was used in many commercial products and
patents [18] as well as in academic sphere [15]. The circuit-based simulation of the

27

complex system can be found in [22, 32] where the simulation of guitar distortion
effect pedal and guitar overdrive effect pedal was discussed. The nonlinear functions
were obtained from the DC solution of nonlinear circuit. The rest of circuits was
divided into analog linear filters. Consequently, symbolic analysis of these filters
was performed and finally, digital filters were designed using the Bilinear transform
of symbolically derived analog transfer functions. This procedure is described in
detail e.g in [33, 34]. The simulation of both guitar pedals was also compared with
measured originals. Results showed validity of this approach although it is not
the exact emulation of circuits. Computational cost is comparable to commercial
products. Further accuracy can be achieved by using more accurate nonlinear
devices, more sophisticated nonlinear block simulation and probably better division
into blocks.

1.2.4 State Space Based Approach

The main problem of direct numerical integration of circuit equation from chapters
1.2.1, 1.2.2 is, except the necessity of use of a nonlinear iterative solver, total number
of equations and thus number of unknown variables to be solved numerically. The
nonlinear equations are spread over the unknowns forming non-computable loops –
delay free loops. However, as it was showed in prior work [35] and then reviewed
in [20, 21, 22], the number of unknown variables to be solved numerically can be
significantly reduced by using transformation of linear parts of the circuit equations
which highlights nonlinear mappings. Since this method has worked with Kirchhoff’s
variables (in contrast to other methods reducing the delay free loops), it was called
the K-method. The main assumption in [35] is that the continuous-time system can
be decomposed into a nonlinear multiple-input multiple-output mapping part and
a linear dynamic part. The circuit equations can be rewritten to

ẋ = Ax + Bu + Ci (1.15)
i = f(v) (1.16)

v = Dx + Eu + Fi, (1.17)

where x is the state variable of the system and ẋ its time derivative, u is the input of
the system (the notation of variables differs here from the original one [35] because
the notation from [22] was used). Equation (1.16) represents the nonlinear mapping
function and the variable v contains transformed circuit equations which serve as the
input to the nonlinear mapping function 𝑓(·). The output variable can be expressed
as

y = Aox + Bou + Coi. (1.18)

28

To get a discrete time version, a discretization of the state variable derivative
is necessary. The process of discretization for both BE and TR discretization is
described in [35]. The original method was developed for the simulation of nonlinear
acoustic systems and therefore, it was reviewed in [20, 21, 22] in order to adapt the
method for the simulation of electronic circuits. The nonlinear electronic component
models are usually specified as voltage-controlled current sources 𝑖 = 𝑓(𝑣) as it has
already been mentioned earlier. This term is in correspondence with the equation
(1.16) where the variable i holds currents of nonlinear component models and variable
v holds controlling voltages on nonlinear component model terminals. A subsequent
discretization, TR for instance, of equation (1.15) leads to the discrete state update
equation

x[𝑛] = H(𝛼I + A)x[𝑛− 1] + HB(u[𝑛] + u[𝑛− 1]) + HC(i[𝑛] + i[𝑛− 1]) (1.19)

where H = (𝛼I−A)−1, 𝛼 = 2/𝑇 for bilinear transform without frequency prewarping.
Further substitution of (1.19) into (1.17) results in

v[𝑛] = p[𝑛] + (DHC + F)i[𝑛] (1.20)

with

p[𝑛] = DH(𝛼I+A)x[𝑛−1]+(DHB+E)u[𝑛]+DHBu[𝑛−1]+DHCi[𝑛−1] (1.21)

and finally the nonlinear function can be expressed as

i[𝑛] = f(Ki[𝑛] + p[𝑛]) (1.22)

where
K = DHC + F (1.23)

in implicit form which can be given by a look-up table or solved numerically in
real-time. The final computation scheme consist of:

1. computation of input variable p[𝑛] from equation (1.21),
2. solving the nonlinear function (1.22),
3. and update of state variable according to (1.19).

The equation (1.22) can be solved by Newton-Raphson method given, for this case,
by

i𝑖𝑡+1 = i𝑖𝑡 − J(i𝑖𝑡)−1f(i𝑖𝑡) (1.24)

with the subscript 𝑖𝑡 denoting iterations, the residual function

f(i𝑖𝑡) = −i𝑖𝑡 + f(Ki𝑖𝑡 + p[𝑛]) (1.25)

and Jacobian
J(i𝑖𝑡) = JF(Ki𝑖𝑡 + p[𝑛])− I (1.26)

29

where JF(·) is the Jacobian of nonlinear components and I the identity matrix. The
global convergence can be ensured by using the homotopy. Details can be found in
[22]. Because the unknowns of the nonlinear function are currents of the nonlinear
components, the method was denoted as iteration on currents.

However, it was found in [22] that it is possible to derive the method to iterate
on unknown voltages (VK-method) that has faster convergence than iteration on
currents. This is due to the compressive character of the residual function of VK-
method. In this case, the nonlinear component equation (1.16) is substituated into
(1.17) resulting in

v = Dx + Eu + Ff(v). (1.27)

The nonlinear equation to be solved is now

v[𝑛] = p[𝑛] + Kf(v[𝑛]). (1.28)

The residual function for the Newton-Raphson method is

f(v𝑖𝑡) = −v𝑖𝑡 + p[𝑛] + Kf(v𝑖𝑡) (1.29)

and Jacobian
J(v𝑖𝑡) = KJF(v𝑖𝑡)− I (1.30)

and the Newton-Raphson method is then

v𝑖𝑡+1 = v𝑖𝑡 − J(v𝑖𝑡)−1f(v𝑖𝑡) (1.31)

with unknown controlling voltages on nonlinear component terminals.
Yeh in his work [20, 21, 22] also proposed the method for automated derivation

of K-method matrices from the MNA description of the circuit given by equation
(1.4). This method requires a prior discretization of components, as it has already
been considered in (1.4), and therefore it is denoted as the DK-method. The nodal
voltages from (1.4) can be computed using

v[𝑛] = M−1Mxx[𝑛− 1] + M−1Muu[𝑛] + M−1Mni(v)[𝑛] (1.32)

while all the nodal voltages in terms of the K-method can be computed from

v[𝑛] = A′
xx[𝑛− 1] + B′u[𝑛] + C′i(v)[𝑛]. (1.33)

The relation is obvious and resulting in A′ = M−1Mx, B′ = M−1Mu and C′ =
M−1Mn. However, to form the matrices A, B, C, D, E, F, Ao, Bo, Co, correspond-
ing voltages from the vector v must be subtracted. This can be done by subtracting
pairs of corresponding rows in matrices A′, B′, C′. Further details can be found in
[20].

Regarding computational complexity, the algorithm has quadratic complexity
which can be expressed as 𝑂(𝑁2 + 𝑁𝑀 + 𝑁𝑃) where 𝑁 is the number of states, 𝑀

is the number of inputs and 𝑃 the number of outputs.

30

1.2.5 Nonlinear Wave Digital Filters

Wave digital filters are another approach to elimination or reduction of delay free
loops. Wave digital filters were extensively studied in many publications. The
detailed description and overview, including many practical examples, can be found
in [36]. However, linear wave digitals filters were the main interest there. Later
publications discussed integration of nonlinear wave digital components to solve
nonlinear problems. The extension of linear wave digital filters with a nonlinear
resistance component for simulation of Chua’s circuit was used in [37]. The nonlinear
capacitor and the inductor model were introduced in [38] and later in [39]. An
important step came with publication [30] where nonlinear wave digital filters were
used for the real-time simulation of a tube single stage amplifier. This work was
further extended in [17] and real-time simulation of a single ended tube power
amplifier using wave digital filters was described in [31]. Finally, the overview of use
of wave digital filters for the virtual analog models was given in [14].

The basic principle of wave digital filters is substitution of classic port variables
– Kirchhoff variables (voltage 𝑣 and current 𝑖) by wave variables – incident and
reflected waves 𝐴 and 𝐵 and a port resistance 𝑅, which is however not related
with the physical resistance, all representing one port element (e.g. resistor). The
transformation of the Kirchhoff variables to wave variables is given by⎡⎣ 𝐴

𝐵

⎤⎦ =
⎡⎣ 1 + 𝑅

1−𝑅

⎤⎦ ⎡⎣ 𝑣

𝑖

⎤⎦ (1.34)

and the backward transformation⎡⎣ 𝑣

𝑖

⎤⎦ = 1
2

⎡⎣ 1 1
1
𝑅
− 1

𝑅

⎤⎦⎡⎣ 𝐴

𝐵

⎤⎦ . (1.35)

Then all circuit components are replaced by wave digital filters using the transforma-
tion (1.34). Reactive components, such as capacitors and inductors, further require
component-wise discretization that makes use of the Bilinear transform. A library
of transformed components can be found in literature [30, 31, 40] and others and
therefore, it will not be further described here.

Once all components of the circuit have been transformed, they must be connected
to form a wave digital filter structure. This process can lead to generation of delay
free loops if the port resistances are unmatched because of instantaneous reflections.
To cope with this problem, special adapters which allow matching of port resistances
were introduced. Generally, it is possible to use 𝑁 -port adapters, however it is
usually sufficient to use only 3-port adapters connecting two ports and the rest of
the system. Because connections in the electronic circuit can be either in series or
parallel, both types of three port adapters were developed. Each adapter contains at

31

most one special port denoted as Reflection Free Port (RFP) whose impedance is
matched to the resulting (series or parallel) impedance of all other ports connected to
the adapter. The advantage of this port is that there is no instantaneous reflection at
this port which could cause the delay free loop. Therefore, several parts of the circuit
are connected using these RFP ports, forming a tree structure of port adapters with
one reflection free port placed in the root of the tree. This tree can be found under
the term Binary Connection Tree (BCT).

As it can be seen from the previous text, these adapters are essence of wave
digital filter structures. The series 𝑁 -port adapter can be described by scattering
port relations given by scattering parameter

𝛾𝑣 = 2𝑅𝑣

𝑅1 + 𝑅2 + . . . 𝑅𝑛

(1.36)

for 𝑣-th port, the series junction wave variable

𝑎s = 𝑎1 + 𝑎2 + . . . 𝑎𝑛 (1.37)

and reflected waves for each port

𝑏v = 𝑎𝑣 + 𝛾𝑣𝑎s. (1.38)

Similarly, the parallel adapter is given by

𝛾𝑣 = 2𝐺𝑣

𝐺1 + 𝐺2 + . . . 𝐺𝑛

(1.39)

for 𝑣-th port and where the symbol 𝐺 denotes the conductance of the port, the
parallel junction wave variable

𝑎p = 𝛾1𝑎1 + 𝛾2𝑎2 + . . . 𝛾𝑛 𝑎𝑛 (1.40)

and reflected waves for each port

𝑏v = 𝑎𝑣 + 𝑎p. (1.41)

When forming the Wave Digital Filter (WDF) tree manually, one must select the
root of the tree and subsequently connect all circuit components using parallel and
series adapters. The runtime equation can be formed using equations (1.36, 1.37,
1.38, 1.39, 1.40, 1.41) by substituting reflected waves into incident waves of connected
blocks. The recomputation of incident wave variables starts from the most bottom
leaves of the BCT up to the root and then all reflected waves are recomputed back
to the bottom leaves of the BCT. As it has been already mentioned in [22], naming
of variables in terms of the incident variable 𝑎 and 𝑏 is unwieldy and therefore it is
more practical to label the wave going up to to root by 𝑢 wave and the wave going

32

down the tree as 𝑑. Using this notation, it is possible to rewrite 3-port adapters into
a more convenient form

𝑢 = − (𝑢1 + 𝑢2) (1.42)
𝑑1 = 𝑢1 − 𝛾1 (𝑑− 𝑢) (1.43)
𝑑2 = 𝑢2 − 𝛾2 (𝑑− 𝑢) (1.44)

for series adaptor and

𝑢 = 𝛾1𝑢1 + 𝛾2𝑢2 (1.45)
𝑑1 = 𝑢− 𝑑− 𝑢1 (1.46)
𝑑2 = 𝑢− 𝑑− 𝑢2 (1.47)

where 𝑢1 and 𝑢2 are up-going waves from connected ports to the adapter and 𝑑1,
𝑑2 are down-going waves. Variables 𝑢 and 𝑑 are up-going and down-going adapted
waves to the next adapter and the root of the BCT. The recomputation starts
with substituting inputs and delayed reflected waves of accumulating elements into
the up-going wave and afterwards, all accumulating elements are updated by down-
going wave and the state is again stored by the delayed reflected wave. A big
advantage of using these adapters is the low computational complexity. According
to [40], the 𝑁 -port adapter requires 𝑁 − 1 multiplications and 2𝑁 − 2 additions
and 𝑁 element circuits 𝑁 − 2 adapters leading to the overall complexity 2𝑁 − 4
multiplications and 4𝑁 − 8 additions. This means that the WDF offers the linear
computational complexity in contrast to the general scattering matrices providing
quadratic computational complexity.

The manual derivation of runtime equations is rather demanding. Therefore,
literature [41, 42] deals with a systematic way of derivation of the WDF structure.
Literature [42] also deals with an implementation of wave digital filters in the
BlockCompiler software tool [43, 44], which was also used for the real-time simulation
of tube amplifiers in papers [30, 17, 31]. Using this tool, it is possible to obtain
a very efficient implementation of simulation the of the given circuit, even if it is
nonlinear.

Nonlinear wave digital filters are the extension of linear digital filters by non-
linear components. In case of audio effect circuit it would be nonlinear models of
tubes, diodes and transistors that are modeled as a nonlinear resistance in WDF
structure. The port nonlinear resistance is a reflection function of the incoming
wave. Considering incorporation of the nonlinear element in the BCT requires the
nonlinear component to be matched with the adapter to which it is connected.
However, the nonlinear port resistance is the function of the incoming wave and
thus, it requires to recompute scattering parameters of all adapters in the BCT to

33

match port impedances every time when the resistance changes, which degrades
the overall computational efficiency of the algorithm. Therefore, when an efficient
algorithm is desired, the nonlinear element must be connected to the reflection
free port to prevent the propagation of the resistance change to all other elements.
It means, according to the connection rules, that the nonlinear element must be
placed as the root element. This fact implies that it is possible to make the efficient
algorithm only with one nonlinear function, which is main drawback of this method.
Although modifications of WDF based on a multi-port vector nonlinear element
were introduced ([45]), multiple nonlinear circuits are solved with an unit delay of
nonlinear functions [30, 46, 14]. However, this simplification is essentially the same
as the use of explicit ODE and it can lead to non-stability of the solution under
certain circumstances unless a sufficiently high sampling frequency is used.

1.2.6 Volterra Series

A nonlinear convolution is one of other methods successfully applied for the simulation
of nonlinear audio effects. Although this approach is quite old and well known, it has
been exploited recently because more powerful processors are available. Nevertheless,
in contrast with the previously mentioned algorithms, it is the black-box approach,
which needs techniques for the nonlinear system identification.

The base of this approach is the Volterra series, which is the extension of the
classical linear system theory into nonlinear systems. The necessary theory can be
found e.g. in [47]. The discrete time Volterra series is given by

𝑦[𝑛] =
𝑀∑︁

𝑚1=0
ℎ1[𝑚1]𝑥[𝑛−𝑚1]+

+
𝑀∑︁

𝑚1=0

𝑀∑︁
𝑚2=0

ℎ2[𝑚1, 𝑚2]𝑥[𝑛−𝑚1]𝑥[𝑛−𝑚2] + · · ·

+
𝑀∑︁

𝑚1=0
· · ·

𝑀∑︁
𝑚𝑁 =0

ℎ𝑁 [𝑚1, · · · , 𝑚𝑁]𝑥[𝑛−𝑚1] · · ·𝑥[𝑛−𝑚𝑁]

(1.48)

with 𝑀 →∞ and where ℎ1, ℎ2 to ℎ𝑁 are up to 𝑁 -dimensional Volterra kernels. This
equation is capable to describe a nonlinear system with memory. Implementation
of the algorithm is very straightforward according to (1.48) but on the other hand,
obtaining of Volterra kernels is a very difficult task. The Volterra kernels can be
obtained using cross-correlations of the pseudo-random input signal and output
signal as was suggested in [14], by nonlinear adaptive filters [48] or even by derivation
from circuit equations [49]. In all cases, a strongly linear system require the Volterra
series of the high order which leads to rapid increasing of computational cost and
also the amount of coefficients of 𝑁 -dimensional Volterra kernels.

34

However, it is possible to reduce dimension of the Volterra kernels by their
factorization [14] given by

ℎ𝑖 (𝑛1, 𝑛2, . . . , 𝑛𝑖) =
∏︁

𝑖

ℎf
𝑖 (𝑛) (1.49)

where the original 𝑁 -dimensional Volterra kernel is expressed as a product of fac-
torized one dimensional kernels ℎf

𝑖 (𝑛) and the Volterra series can be rewritten into

𝑦[𝑛] =
𝑀∑︁

𝑚=0
ℎf

1[𝑚]𝑥[𝑛−𝑚]+

+
(︃

𝑀∑︁
𝑚=0

ℎf
1[𝑚]𝑥[𝑛−𝑚]

)︃2

+ · · ·+
(︃

𝑀∑︁
𝑚=0

ℎf
𝑁 [𝑚]𝑥[𝑛−𝑚]

)︃𝑁

=

=
𝑁∑︁
𝑖

(︃
𝑀∑︁

𝑚=0
ℎf

𝑖[𝑚]𝑥[𝑛−𝑚]
)︃𝑖

(1.50)

which can be decomposed into the linear dynamic and nonlinear memoryless parts
(see Figure 1.1) and it can be treated as the Wiener nonlinear model.

𝐻(𝑧) 𝑓(𝑥)

Wiener model

𝑓(𝑥) 𝐻(𝑧)

Hammerstein model

𝐻(𝑥) 𝑓(𝑥) 𝐻(𝑧)

Wiener-Hammerstein model

Figure 1.1: Block diagrams of Wiener (top), Hammerstein (middle) and Wiener-
Hammerstein nonlinear model.

This model as well as the identification of filter coefficients for the simulation of
nonlinear audio amplifier was discussed in [50]. This simplification allows significant
reduction of computational cost while the the accuracy of simulation is sufficient for
certain type of circuits. The further advantage is that this implementation enables

35

to avoid the aliasing distortion by modifying linear filters by incorporating low-pass
filters. As can be seen from Figure 1.1, there are other simplified models of Volterra
series, namely the Hammerstein model and the Wiener-Hammerstein model. The
Hammerstein model is given by

𝑦[𝑛] =
𝑀∑︁

𝑚=0
ℎf

1[𝑚]𝑥[𝑛−𝑚]+

+
𝑀∑︁

𝑚=0
ℎf

1[𝑚]𝑥2[𝑛−𝑚] + · · ·+
𝑀∑︁

𝑚=0
ℎf

𝑁 [𝑚]𝑥𝑁 [𝑛−𝑚] =

=
𝑁∑︁
𝑖

(︃
𝑀∑︁

𝑚=0
ℎf

𝑖[𝑚]𝑥𝑖[𝑛−𝑚]
)︃

(1.51)

and this algorithm is called the nonlinear convolution in literature [51]. It was also
used in paper [52] where the audio limiter effect was simulated using this approach
and in later papers [53, 54] where the overdrive audio effect was simulated. In
contrary to the former paper, the memoryless nonlinearity was implemented by
Chebyshev polynomials. Results showed that it is possible to obtain good accuracy
with the Volterra model with order 9. However neither real-time conditions nor the
computational complexity were discussed.

The proper determination of system coefficients is essential for the sufficient
accuracy of simulation. Plenty of papers in different fields of research deal with an
identification of Hammerstein model parameters. The method convenient for the
identification of audio systems was presented in Farina’s work [51]. It is based on the
swept-sine signal excitation of the measured system. Subsequently, deconvolution of
the obtained signal response with the inverse filter signal (the time reversal excitation
signal with the slope of 6db/oct) is computed to get the nonlinear impulse response
which contains the impulse response of linearized system and then higher order
impulse responses. Finally, it is possible to extract Hammerstein filter kernels using
some algebra described in the paper. This method was further extended by the
work [52, 53, 54] resulting in the synchronized swept-sine method. And even when
one decides to use another approach for the simulation of the audio effect, this
approach still remains an useful tool for the distortion analysis. To sum up this
approach, the published results [52, 53, 54] showed that it is possible to obtain the
accurate simulation of audio effects. However, all the simulated effects contained one
nonlinearity surrounded by linear circuit components, which is in correspondence
with the Wiener-Hammerstein model of the nonlinear system. The system containing
more nonlinear blocks connected with linear dynamic parts would probably require
use of the Volterra series in the full form.

36

1.3 Recent Advances

Although the real-time simulation of analog audio effects is very specific area of
research, there have recently been many publications covering all types of algorithms
mentioned in previous chapters and also attempting new ones. A good overview can
be found in [55]. The method based on time-invariant filter was published by me
in [3]. The simulated circuit, the diode limiter circuit in this case, is described as
the small-signal model using the transfer function where the nonlinear component
was substituted by the resistance in its operating point. In case of small-signals,
it is possible to compute the output signal directly from the difference equation.
However, the operating point changes with large-signals consequently affecting the
value of the resistance and thus, coefficients of the filter change according to the
signal value on the nonlinear element. Two versions of the algorithm were proposed.
The first one uses the signal value from the previous sampling period and requires
a very high sampling frequency to operate properly. The other one uses the signal
value on the nonlinear element from the current sampling period which leads to
generation of the delay free loop and thus, the numerical algorithm must be used.
This approach evinces similar properties as direct solving of ODEs and therefore it
is not very convenient for the simulation of more complex systems.

The static waveshaping method was used in [56] for the simulation of a diode
ring modulator circuit and in [57] for the simulation of bucket-brigade device circuits.
However both papers use techniques which were already discussed in chapter 1.2.3.
An improvement of the wave-shaping method was the goal of work presented in [58].
This method makes use of the standard wave-shaping method implemented as the
sum of Chebyshev polynomials and it also discusses usage of the phase-shaping of the
input signal, which is also applicable as the nonlinear distortion effect [59]. The main
idea was to use a quadrature waveshaper to incorporate the phase information, which
is not possible with the regular waveshaper. Coefficients required by the quadrature
waveshapers are determined from the measurement of the simulated distortion effect.

Another black-box approach based on the Principal Component Analysis (PCA)
is published in [60]. This method makes use of the swept-sine technique for the
measurement of the distortion effect as was described in [52, 53, 54] but in contrast
with these papers, the simplification of measured results through the PCA is used,
resulting in a lower order system than if it would have to be used in case of direct
application of the Hammerstein model. This is possible due to the compression of
the measured information. The system has the similar structure to the Hammerstein
model consisting of 𝑀 branches, each with the static waveshaper and the linear
filter given by its impulse response. The 𝑁 original Chebyshev polynomials were
replaced by 𝑀 components computed from the PCA and also 𝑁 original higher order

37

impulse responses were transformed into 𝑀 compressed impulse responses. If the
compression is possible, then 𝑀 < 𝑁 . This approach was tested in the simulation of
the Tube Screamer overdrive guitar effect pedal and the original system of order 27
was reduced to the new system of order 8 and overall computational cost decreased
by 66 %.

There has also been a progress in the field of the WDF approach. The implemen-
tation of the WDF structure in the Csound audio programming language was shown
in [61]. The implementation was verified in the simulation of the common cathode
triode amplifier with both nonlinear grid and plate currents and it is workable
in real-time. The detailed overview on the virtual analog modeling was given in
literature [62], where wide range of WDF blocks were reviewed. Further, the problem
of the multiple nonlinearity in the WDF structure is discussed on the example of
the common emitter transistor amplifier. The standard approach of connecting one
port elements with 3-port adapters leads to the non-computable loop. However, it
was shown that it is possible to solve this circuit efficiently by using a multiple port
nonlinear block connected in the root of the BCT. The options of usage of WDFs
are shown also on other examples. The WDF based simulation of the tube power
amplifier was published in paper [46]. This simulation also incorporates the nonlinear
model of the output transformer based on the gyrator-capacitor model. This model
consists of two nonlinear functions which were however delayed by one sample, which
can be considered as a step back, when comparing to literature [62] where multiple
nonlinearities are discussed. However this paper is important because of the design
of the nonlinear transformer model for real-time processing.

1.3.1 Advances in State-Space Modeling

A big step ahead has been done in the area of state-space modeling algorithms.
A modified approach of the state-space modeling was introduced by Cohen in his
work [63, 64]. The original linear state-space model is given by

ẋ = Ax + Bu

y = Cx + Du
(1.52)

where x is the state vector, y is the output vector and u is the input vector which is
extended by the static nonlinear vector w forming the new state-space equations

ẋ = f (x, u, w)
0 = g (x, u, w)
y = h (x, u, w)

(1.53)

where functions f , h would be for the linear case f (x, u, w) = Ax+Bu, h (x, u, w) =
Cx+Du, g unused and w = 0. In case of nonlinear systems, they must be determined

38

manually according to the given circuit. To implement equation (1.53), it must be
discretized first. The trapezoidal rule of the first equation in the system of equations
(1.53) leads to the implicit state update function

x[𝑛 + 1] = x[𝑛] + 𝑇

2 𝑓 (x[𝑛 + 1], u[𝑛 + 1], w[𝑛 + 1]) + 𝑇

2 𝑓 (x[𝑛], u[𝑛], w[𝑛]) (1.54)

with the sampling period 𝑇 . This implicit equation requires the numerical algorithm
to solve and for the use of the numerical algorithm can be rewritten to f(Z) = 0
where Z =

[︁
x w

]︁T
. Although this state-space representation is more general,

the dimension of the vector of unknowns Z to be solved numerically is higher than
with the DK-method. It was also found in later literature [65] that the numerical
scheme has problems with the stiffness and it can be unstable. Therefore, the BE
discretization was used to get the state update function

x[𝑛 + 1] = x[𝑛] + 𝑇𝑓 (x[𝑛 + 1], u[𝑛 + 1], w[𝑛 + 1]) . (1.55)

Using this technique, Cohen was able to numerically simulate the guitar preamp with
more tubes connected in series in real-time. The simulation requires the sampling
frequency at least 96 kHz, but the higher sampling frequency should be used to cope
with the aliasing distortion anyway.

A deep review of the DK-method was done by Holters and Zölzer in [66]. The audio
circuit is described using incidence matrices which specify to which nodes are circuit
components connected. Since there have been more types of the circuit components,
resistors are specified in the incidence matrix Nr, accumulating components in Nx

matrix, nonlinear components in the matrix Nn, inputs of the circuit, such as the
input signal and the power supply voltage, are specified in Nu and finally, outputs of
the circuit are given by No matrix. The circuit equation can be expressed as

S

⎛⎝ v
is

⎞⎠ =
⎛⎝ NT

x

0

⎞⎠x +
⎛⎝ 0

I

⎞⎠u +
⎛⎝ NT

n

0

⎞⎠ in (1.56)

which has got the same formal structure as the MNA circuit equation given by (1.4)
and where in is the vector of nonlinear currents, I is the identity matrix, u is the
vector of input voltages, x is the vector of states, is is the vector of unknown currents
of ideal voltage sources, v is the vector of unknown voltages and S is the conductance
matrix given by

S =
⎛⎝ NT

r GrNr + NT
x GxNx NT

u

Nu 0

⎞⎠ . (1.57)

The matrix Gr is the diagonal resistor conductance matrix and Gx is the diago-
nal capacitor resp. inductor conductance matrix. The voltages on accumulating

39

components vx can be obtained from

vx =
(︁

Nx 0
)︁

S−1

⎛⎝⎛⎝ NT
x

0

⎞⎠x +
⎛⎝ 0

I

⎞⎠u +
⎛⎝ NT

n

0

⎞⎠ in

⎞⎠ (1.58)

and similarly, voltages vn and vo can be computed when incident matrix Nn resp.
No are used instead of Nx. Using the voltages vx, vn, vo, discretized accumulating
component models (refer chapter 1.4 for details) and DK-method equations, it is
possible to derive for the TR discretization following equations

x[𝑛] = Ax[𝑛− 1] + Bu[𝑛] + Cin(v[𝑛]), (1.59)
y[𝑛] = Dx[𝑛− 1] + Eu[𝑛] + Fin(v[𝑛]), (1.60)
v[𝑛] = Gx[𝑛− 1] + Hu[𝑛] + Kin(v[𝑛]) (1.61)

with matrices

A = 2ZGx
(︁

Nx 0
)︁

S−1
(︁

Nx 0
)︁T
− Z, (1.62)

B = 2ZGx
(︁

Nx 0
)︁

S−1
(︁

0 I
)︁T

, (1.63)

C = 2ZGx
(︁

Nx 0
)︁

S−1
(︁

Nn 0
)︁T

, (1.64)

D =
(︁

No 0
)︁

S−1
(︁

Nx 0
)︁T

, (1.65)

E =
(︁

No 0
)︁

S−1
(︁

0 I
)︁T

, (1.66)

F =
(︁

No 0
)︁

S−1
(︁

Nn 0
)︁T

, (1.67)

G =
(︁

Nn 0
)︁

S−1
(︁

Nx 0
)︁T

, (1.68)

H =
(︁

Nn 0
)︁

S−1
(︁

0 I
)︁T

, (1.69)

K =
(︁

Nn 0
)︁

S−1
(︁

Nn 0
)︁T

(1.70)

where Z is the diagonal matrix with 1 for the capacitor and −1 for the inductor with
size equal to the size of Gx. Note that the notation of the matrices slightly differs
from the original DK method.

1.3.2 State-Space Approach for Parametric Circuits

State-space approaches discussed in previous chapters were focused on circuits with
constant circuit parameters. However, most of audio effect circuits are parametric
circuits. The application of the standard DK-method on simulation of the parametric
circuit was discussed in [67]. The change of parameter in the standard DK-method
requires the recomputation of the whole circuit matrix which is often huge even for

40

simple circuits. Therefore, the derivation of the DK-method matrices from continuous
state-space description was introduced and tested on two types of audio circuits
– the linear tone stack circuit and the distortion stage of the Marshall JCM 900
amplifier. Firstly, continuous state-space matrices are derived symbolically from
circuit equations where states are voltages on capacitors. Then the discretization
follows. For the TR discretization, it is possible to derive the DK-method matrices
(denoted with the line over the matrix symbol)

A =
(︂ 2

𝑇
I + A

)︂(︂ 2
𝑇

I−A
)︂−1

(1.71)

B = 2
(︂ 2

𝑇
I−A

)︂−1
B (1.72)

C = 2
(︂ 2

𝑇
I−A

)︂−1
C (1.73)

D = 2
𝑇

D
(︂ 2

𝑇
I−A

)︂−1
(1.74)

E = E + D
(︂ 2

𝑇
I−A

)︂−1
B (1.75)

F = F + D
(︂ 2

𝑇
I−A

)︂−1
C (1.76)

G = 2
𝑇

G
(︂ 2

𝑇
I−A

)︂−1
(1.77)

H = HG
(︂ 2

𝑇
I−A

)︂−1
B (1.78)

K = KG
(︂ 2

𝑇
I−A

)︂−1
C. (1.79)

Compared to the automated nodal DK-method presented by Yeh, this approach offers
lower computational cost for the recomputation of the DK-method matrices when
there is a change of circuit parameters. However, the main drawback is symbolical
expression of state-space matrices.

An efficient handling of parameter changes was also considered in the reviewed DK-
method by Holters amd Zölzer [66] where the DK-method with incidence component
matrices was used for the simulation of a guitar wah pedal, which is an example of
quite complex and parametric audio effect circuit. The standard approach of the
DK-method matrices recomputation would also lead to computationally demanding
process. However, it is possible to separate constant and parametric part of the
circuit which leads to the modification of conductance matrix S into

S =
⎛⎝ NT

r GrNr + NT
v R−1

v Nv + NT
x GxNx NT

u

Nu 0

⎞⎠ =

= S0 +
(︁

Nv 0
)︁T

R−1
v

(︁
Nv 0

)︁ (1.80)

41

where Nv is the incidence matrix of variable resistors (potentiometers) and Rv

diagonal matrix of corresponding resistances and S0 the constant conductance matrix
given exactly according to (1.57). The conductance matrix inversion than can be
expressed as

S−1 = S−1
0 − S−1

0

(︁
Nv 0

)︁T (︁
R−1

v + Q
)︁ (︁

Nv 0
)︁

S−1
0 (1.81)

with
Q =

(︁
Nv 0

)︁
S−1

0

(︁
Nv 0

)︁T
. (1.82)

Final matrices can be obtained from

A = A0 − 2ZGxUx (Rv + Q)−1 UT
x , (1.83)

B = B0 − 2ZGxUx (Rv + Q)−1 UT
u , (1.84)

C = C0 − 2ZGxUx (Rv + Q)−1 UT
n , (1.85)

D = D0 −Uo (Rv + Q)−1 UT
x , (1.86)

E = E0 −Uo (Rv + Q)−1 UT
u , (1.87)

F = F0 −Uo (Rv + Q)−1 UT
n , (1.88)

G = G0 −Un (Rv + Q)−1 UT
x , (1.89)

H = H0 −Un (Rv + Q)−1 UT
u , (1.90)

K = K0 −Un (Rv + Q)−1 UT
n , (1.91)

where A0, B0, C0, D0, E0, F0, G0, H0 and K0 are matrices for constant parameters
computed according to (1.62 - 1.70) and

Ux =
(︁

Nx 0
)︁

S−1
0

(︁
Nv 0

)︁T
(1.92)

Uo =
(︁

No 0
)︁

S−1
0

(︁
Nv 0

)︁T
(1.93)

Un =
(︁

Nn 0
)︁

S−1
0

(︁
Nv 0

)︁T
(1.94)

Uu =
(︁

0 I
)︁

S−1
0

(︁
Nv 0

)︁T
. (1.95)

Although this equation might seem very complex, the significant computational cost
reduction can be achieved because the size of matrix Q is usually much lower than
the size of complex system.

1.4 Basic Circuit Component Models for Real-
time Audio Effect Simulation

The choice of a proper model of circuit components is one of the most important
aspects when simulating the analog audio effect. A wide range of different circuit

42

components with different complexity has been designed which allow to achieve
very accurate simulation results. However, this complexity is in the contrast with
requirements of audio real-time processing. Fortunately, it is possible to neglect
several aspects of the complex model – foremost parasitic capacitances of the models
because of limited frequency bandwidth. This enables to design models that are
frequency independent and it is possible to describe them using the nonlinear static
mapping of the input to the output variable. When talking about component
models, one usually think only of nonlinear component models. However, as it
was mentioned in previous chapters, many of simulation algorithms require the
component-wise discretization of energy-storing components which are defined by
differential equations. Therefore, in this chapter, the local discretization of linear
components will be described and further some nonlinear models convenient for use
in real-time digital audio signal processing will be discussed.

1.4.1 Discretized Models of Capacitor and Inductor

The discretization of energy-storing components is often made by using companion
circuits consisting of the equivalent conductance and the source holding the state
of the component as was shown in [68] and was also derived in [22]. As a result of
application of TR on the capacitor current equation

𝑖C = 𝐶
d𝑣

d𝑡
, (1.96)

the capacitor companion model is

𝑖[𝑛] = 2𝐶

𝑇
𝑣 + 𝑖C[𝑛− 1] (1.97)

where
𝑖C[𝑛] = −

(︂2𝐶

𝑇
𝑣 + 𝑖[𝑛]

)︂
. (1.98)

Similarly for the inductor, the companion circuit is

𝑣[𝑛] = 2
𝑇

Φ[𝑛] + 𝑣L[𝑛− 1] (1.99)

where
𝑣L[𝑛] = −

(︂ 2
𝑇

Φ[𝑛] + 𝑣[𝑛]
)︂

(1.100)

and Φ[𝑛] is flux given by 𝐿𝑖[𝑛] with the inductance 𝐿.
To unify both models, Holters and Zölzer have suggested following discretization

scheme [66]
𝑖[𝑛] = 𝐺x𝑣[𝑛] + 𝑥[𝑛− 1] (1.101)

43

where 𝑖[𝑛] is the current flowing through the capacitor or the inductor, 𝐺x = 2𝐶
𝑇

for the capacitor or 𝐺x = 𝑇
2𝐿

for the inductor, 𝑣 is voltage on the element and 𝑥 is
a canonical state of the element. The state update is possible using

𝑥[𝑛] = 𝑍 (2𝐺x𝑣[𝑛]− 𝑥[𝑛− 1]) (1.102)

where 𝑍 = 1 for the capacitor and 𝑍 = −1 for the inductor.

1.4.2 Diode Model

The simulation of circuits with the embedded diode was discussed in many papers,
e.g. [22, 24, 32, 67] and all have shown that it is possible to use the simplified model
of the diode given by Shockley equation

𝑖 = 𝑖S

(︂
exp

(︂
𝑣

𝑛𝑣T

)︂
− 1

)︂
(1.103)

where 𝑖S is the saturation current, 𝑣T the thermal voltage and 𝑛 the emission
coefficient. Since diodes have often been used in anti-parallel topology in audio effect
circuits, the resulting current of anti-parallel connection can be expressed as

𝑖 = 2𝑖S sinh
(︂

𝑣

𝑛𝑣T

)︂
. (1.104)

1.4.3 Transistor Model

Transistors, either bipolar junction or junction field effect transistors, are often used
as signal buffers or as active elements in filters. A nonlinear DC model of the Bipolar
Junction Transistor (BJT) can be modeled by well known Ebers-Moll equations

𝑖C = 𝑖CC −
𝛽R + 1

𝛽R
𝑖CE

𝑖E = 𝑖CE −
𝛽F + 1

𝛽F
𝑖CC

𝑖B = 1
𝛽F

𝑖CC + 1
𝛽R

𝑖CE

(1.105)

where currents 𝑖CC and 𝑖CE are given by Shockley equation (1.103) for voltages 𝑣BE

resp. 𝑣BC and parameters 𝛽F and 𝛽R are forward and reverse current gain parameters.
This model was successfully tested on simulation of the guitar wah pedal [66].

The Junction Field Effect Transistor (JFET) can be modeled e.g. using Shichman-
Hodges model which is also used in the SPICE simulator [68]. The Shichman-Hodges
model is defined

𝑖DS =

⎧⎪⎪⎨⎪⎪⎩
0 𝑣GS ≤ 𝑣TO

𝛽(𝑣GS − 𝑣TO)2(1 + 𝜆𝑣DS) 0 < 𝑣GS − 𝑣TO ≤ 𝑣DS

𝛽𝑣DS (2 (𝑣GS − 𝑣TO)− 𝑣DS) (1 + 𝜆𝑣DS) 0 < 𝑣DS < 𝑣GS − 𝑣TO

(1.106)

44

where 𝑖DS is the drain-source current, 𝑣GS is the gate-source voltage, 𝑣DS is the
drain-source voltage and 𝑣TO, 𝛽, 𝜆 are the threshold voltages, the transconductance
factor and the conductance factor in saturation respectively.

1.4.4 Tube Models

Because there has been recently quite big attention paid for the simulation of circuits
containing tubes, a wide range of tube models has been discussed in many papers
[69, 70, 64, 65, 71, 72] and others. Models proposed by Koren [70] and its extended
version with a grid current designed by Cohen [65] and the triode model proposed
by Dempwolf [69] seem to be the most perspective. The Koren’s triode model
was used in many publications dealing with the simulation of triode amplifier e.g.
[40, 22, 30, 64, 65] and its validity was proved by measurement in [65]. The model is
given by the plate current function

ip = EEx
1

Kg1
(1 + sgn(E1)) (1.107)

where
E1 = vpk

Kp
log(1 + exp(Kp(1

𝜇
+ vgk√︁

Kvb + v2
pk

)) (1.108)

with tube parameters 𝜇, Ex, Kp and Kvb and 𝑣gk is the grid-to-cathode voltage and
𝑣pk is the plate-to-cathode voltage. The grid current added by Cohen is

𝑖g =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 𝑣gk < 𝑣𝛾 −𝐾n

𝑎𝑣2
gk + 𝑏𝑣gk + 𝑐 𝑣𝛾 −𝐾n < 𝑣gk < 𝑣𝛾 + 𝐾n

𝑣gk−𝑣𝛾

𝑅gk
𝑣gk > 𝑣𝛾 + 𝐾n

(1.109)

where

𝑎 = 1
4𝐾n𝑅gk

𝑏 = 𝐾n − 𝑣𝛾

2𝐾n𝑅gk

𝑐 = −𝑎(𝑣𝛾 −𝐾n)2 − 𝑏(𝑣𝛾 −𝐾n)

(1.110)

for tube parameters 𝐾n, 𝑣𝛾 and 𝑅gk.
The Koren’s model is also defined for a pentode tube given by the plate current

ip = EEx
1

Kg1k
(1 + sgn(E1)) arctan(vpk

Kvb
), (1.111)

where
E1 = vg2k

Kp
log(1 + exp(Kp(1

𝜇
+ vg1k

vg2k
)) (1.112)

45

and the pentode screen current is given by

is =
exp(Ex log(vg2k

𝜇
+ vg1k)

Kg2
(1.113)

with tube parameters 𝜇, Ex, Kg1, Kg2, Kp and Kvb. The Cohen grid model can be
used for modeling the grid current of the pentode.

The Dempwolf’s triode model [69], which is physically motived, is given by

𝑖g = −𝐺g ·
(︃

log
(︁
1 + exp(𝐶g𝑣gk)

)︁
· 1

𝐶g

)︃𝜉g

𝑖p = −𝐺k ·
(︂

log
(︂

1 + exp
(︁
𝐶k(𝑣pk

𝜇
+ 𝑣gk)

)︁)︂
· 1

𝐶k

)︂𝜉k

− 𝑖g

for tube parameters 𝐺g, 𝐶g, 𝜉g, 𝐺p, 𝐶p, 𝜉p and 𝜇 and was also verified by measure-
ments. Additionally, it provides continuous derivatives and relatively low compu-
tational cost. In case of tubes, dynamic conditions of tube can not be neglected
for accurate simulations. Because of typical high amplification of the tube circuit,
the Miller effect [73] must be considered, since it has been affecting the frequency
response in audible area. Therefore, a parasitic capacitance 𝐶gp (typically 2.4 pF)
should be added into the amplifier circuit model. The other capacitances can be
neglected [64].

1.4.5 Transformer Core Models

Transformers are inseparable part of many electronic devices, mostly as a part of
power supply circuits but it is also possible to find them in the audio signal path.
The linear behavior of transformers can be modeled using algorithms described
earlier and it has already been discussed in [31, 63]. However, the proper magnetic
model must be used to simulate transformers nonlinear behavior expressed using
well known relation of magnetic properties 𝐵 = 𝜇𝐻. Since the nonlinear modeling
of transformers has become important in the research field of power electronics e.g.
[74], several models have been designed [75, 76, 77, 78, 79, 80].

The Frohlich equation used in [74] provides a simple approximation of the
transformer core permeability and it is given by

𝐵 = 𝐻

𝑐 + 𝑏 |𝐻|
(1.114)

where 𝑐, 𝑏 are parameters derived from material properties. The Frohlich model,
however, does not support simulation of the hysteresis loop.

When simulating the hysteresis, one can use e.g. Jiles-Atherton (JA) model [81]
improved in [82] by removing nonphysical minor hysteresis loops. Magnetization 𝑀

46

of the core is obtained from

d𝑀

d𝐻
= 𝛿M

𝑀an −𝑀

𝑘
sign(dH/dt) + cdMan

dH (1.115)

where 𝑀an is anhysteretic curve given by Langevin function

𝑀an = 𝑀s

(︂
coth

(︂
𝐻 + 𝛼𝑀

𝑎

)︂
− 𝑎

𝐻 + 𝛼𝑀

)︂
. (1.116)

Parameters 𝑀s, 𝛼, 𝑎, 𝑐 and 𝑘 are derived from material properties and their identifi-
cation can be found e.g. in [83, 84]. Parameter 𝛿M = 0 when the nonphysical minor
loop is going to be generated alternatively 𝛿M = 1 (refer [82] for details). Finally,
the flux density is obtained from

𝐵 = 𝜇0 (𝑀 + 𝐻) . (1.117)

Although JA model provides good accuracy, due to its computational cost it
might not be convenient for the real-time processing. The efficient model of the
nonlinear magnetic core based on the gyrator-capacitor model was introduced in [85].
The saturation effect is simulated by a nonlinear capacitor model and the hysteresis
effect using a nonlinear resistor. The nonlinear capacitor is equivalent to a constant
capacitor 𝐶 in series with a voltage controlled voltage source defined as

𝑣(𝑣C) = |𝑎𝑣C|𝑛 sign(𝑣C) (1.118)

where 𝑣C is controlling voltage over the constant capacitor and 𝑎, 𝑛 are saturation
parameters. The nonlinear resistor is implemented as a constant resistor 𝑅 connected
in parallel with the voltage controlled current source defined as

𝑖(𝑣R) =
⃒⃒⃒⃒
⃒𝑏𝑣R

𝑅

⃒⃒⃒⃒
⃒
𝑛

sign(𝑣R) (1.119)

where 𝑣R is the controlling voltage over the constant resistor and 𝑏, 𝑚 are hysteresis
parameters. Because the gyrator is used to transform magnetic properties to electric
ones, the current 𝑖 corresponds to flux-rate change dΦ/d𝑡 and the voltage 𝑣 corre-
sponds to Magneto-Motive Force (MMF) ℱ [86]. The graphic companion circuit
as well as the derivation of parameter values can also be found in paper [85]. This
transformer core model was successfully used in [46] in the real-time simulation of the
audio transformer with one sample delayed nonlinear functions. A slightly different
version of functions (1.118),(1.119) was introduced and further, the determination of
core parameters from the transformer measurement was derived.

47

2 GOALS OF THESIS

Despite of the recent significant progress in the field of real-time simulation of the
analog audio effect, few problems still remain. Foremost, all mentioned algorithms
were tested on relatively simple audio circuits. Therefore, the overall goal of this
thesis is to investigate possibilities of simulation of the complex nonlinear audio
effect circuits in real-time, which will be the guitar amplifier in this case. The block
diagram of the guitar amplifier is given in Figure 2.1 [14, 15, 87]. The preamp consists
of several triode amplifier stages or limiter units, built by operational amplifiers and
diodes, and the passive gain and the tone stack circuit. The power amplifier consists
of the phase splitter and the push-pull amplifier built by two penthodes and the
output transformer.

Triode 1 Gain Stage Triodes 2 - 4 Tone Stack

Preamp

Phase Splitter

Pentode 1

Pentode 2

Transformer Loudspeaker

Power Amplifier

Figure 2.1: Block diagram of guitar amplifier

The DK-method with incidence matrices was chosen as the perspective method
for the simulation of more complex circuits, because the second candidate, nonlinear
wave digital filters, is not very convenient for the simulation of circuits with more
nonlinear functions although it is possible. An extension of DK-method with incidence
matrices will be made by introducing the nonlinear model of the audio transformer
and also the nonlinear model of the operational amplifier in the first part. This part
will also serve as a base for further more complex systems discussed in later parts.
Firstly, circuits with the nonlinear transformer model and operational amplifiers
will be discussed. On given circuits, several nonlinear models will be investigated

48

with regards to accuracy and computational complexity and the proper model to be
integrated into the DK-method will be chosen.

Because the approximation of system nonlinearities plays the key role in the
resulting efficiency of the algorithm, the focus of the next part will be on several
approximation algorithms. Firstly, an offline precomputation of the system nonlin-
earities will be discussed as a way of reduction of the computational complexity.
The precomputation of more complex system may lead to large sets of data to be
stored in the memory. Therefore, the approximation algorithms will be investigated
with regards to computational complexity as well as to the amount of data stored in
look-up tables.

The third part of research is focused on the simulation of complex systems.
Because the simulation of the complex system can be computationally demanding,
techniques of decomposition into simpler parts preserving mutual interaction between
blocks will be discussed.

The final part will be based on listening tests. The validity of designed algorithm
for simulation of complex systems will be tested. Finally, the presence of aliasing
distortion in output signals will be investigated. On the basis of these findings, the
minimal required sampling frequency will be stated.

49

3 CIRCUIT ANALYSIS OF AUDIO EFFECTS

The derivation of circuit equations is always the first step in simulation of the
circuit. It can be done manually or this process can be automated as has already
been mentioned in chapter 1. While the automated process of derivation of circuit
equations is very convenient for complex systems, the manual derivation allows better
understanding of what happens in the circuit and therefore, it can serve as the initial
step for the introduction of new component models into the later automated process
of the derivation of circuit equations. It was also shown that manual derivation of
circuit equations can produce more efficient computational algorithms, especially for
circuits with parametric components [67].

This work continues in prior work of the automated derivation of circuit equations
proposed by Yeh [22] and especially Holters and Zölzer [66] whose method of incidence
component matrices for derivation of the state-space model of the simulated system
will be used. Both works [22, 66] deal with circuits with basic elements. However,
several other components, especially the model of the audio transformer as well
as the model of Operational Amplifier (OPA), should be considered to be able to
simulate audio effects circuits more generally.

Therefore, this chapter will deal with the simulation of circuits containing these
types of components. Firstly, the manual derivation of circuit equations will be made.
Then, different types of nonlinear models of these components will be investigated
with regards to the accuracy of the simulation and the computational cost and finally,
the incorporation of these models into the automated process of derivation of the
circuit equations will be designed.

3.1 Simulation of Circuits with Audio Transformer

Transformers can be found in many audio effect or audio amplifier circuits. However,
they are often a part of power supply circuits and thus, they can be mostly neglected
in simulations of these electronic devices, or their simulation can be done separately.
These transformers can be simulated using the ideal transformer model because
power transformers are usually designed to handle sufficient power and therefore
they work in the linear area of the magnetization curve.

However, transformers are often connected directly in the audio path in many
types of audio circuits, e.g. input and output stages of mixing consoles, professional
studio compressors, etc., where transformers are used as asymmetrical-to-symmetrical
or symmetrical-to-asymmetrical converters. Similar types of the transformers can
also be found in tube power amplifiers where their main function is to match the
high output impedance of used tubes to the low input impedance of the loudspeaker.

50

Although designers of the audio transformers try to minimize the distortion effect of
transformers in order to get a transparent signal path, the presence of the transformer
can be often heard and sometimes it is even required by musicians and audio engineers.
The main reason for this is the characteristic nonlinear distortion caused by the
soft saturation of the transformer core when a large magnetization occurs. However,
the saturation effect is not the only one which manifests in the output signal, the
hysteresis effect and frequency properties also have to be included in the simulation.
The transformer model can be split into three parts – the electric part modeling
parasitic capacitances of windings as well as leakage inductances, the electromagnetic
part responsible for interaction of electric and magnetic field and the magnetic part
which models the core saturation, the hysteresis and eddy currents.

3.1.1 Transformer Model

There are three approaches to the transformer modeling – the ideal model, the
linear model and the nonlinear model of the transformer. The ideal transformer
with number of winding turns 𝑁1,𝑁2 is considered to be an impedance divider that
transforms input voltages 𝑣p and currents 𝑖p to output 𝑣s and 𝑖s according to

𝑣s

𝑣p
= 𝑁s

𝑁p
= 𝑖p

𝑖s
(3.1)

and although the ideal transformer is far away from the real one, it can be an useful
model from the real-time simulation point of view. However, for more accurate
simulation, losses caused by the hysteresis and the core saturation have to be
considered as well as parasitic capacitances of windings, leakage inductances and
windings resistances.

The model of the transformer with two windings derived from [46] is shown in
Figure 3.1. However, the resistances 𝑅1, 𝑅2, the parasitic capacitances 𝐶1, 𝐶2 and the
leakage inductances 𝐿1, 𝐿2 are all modeled in the electric part of the model which is
in contrast with [46] where the leakage inductance is modeled in the magnetic domain.
Because the electric part of transformer can be easily incorporated directly into the
whole circuit, if necessary, these electric components are no further considered as a
part of the transformer model but rather as a part of the whole circuit.

𝑅1 𝐿1

𝐶1

𝑁1

ℛm
𝑁2

𝑅2𝐿2

𝐶2

Figure 3.1: Model of a transformer with two windings.

51

The electromagnetic part of the transformer model is made by two gyrators with
resistances corresponding to numbers of turns of the windings 𝑁1,𝑁2. However, both
gyrators serve only as a graphical representation of the electromagnetic interaction
in the model 3.1 and they will not be used during derivation of the model equations.
The electromagnetic interaction will be modeled using Amper’s law∮︁

𝐻d𝑙 =
∑︁

𝑖

𝐼𝑖 (3.2)

which is for homogeneous magnetizing force 𝐻, number of turns 𝑁𝑖 of 𝑖th winding
and the length of the magnetic path 𝑙mag in form

𝐻𝑙mag =
∑︁

𝑖

𝑁𝑖𝐼𝑖 = ℱ (3.3)

where ℱ is MMF and further Farraday’s induction law for homogeneous magnetic
flux Φ

𝑣𝑖 = 𝑁𝑖
dΦ
d𝑡

= 𝑁𝑖𝑆
d𝐵

d𝑡
(3.4)

where 𝑆 is the transformer core cross-section area and 𝐵 is the flux density.
The magnetic part of the model can be either linear or nonlinear. In case of the

linear magnetic core, the relation between magneto-motive force ℱ and flux Φ is
given by Hopkinson’s law

ℱ = ℛΦ (3.5)

where ℛ is the magnetic reluctance (denoted in Figure 3.1 as ℛm) and given by

ℛ = 𝑙mag

𝜇𝑆
. (3.6)

In case of the nonlinear core model, the reluctance ℛ is nonlinear because of
nonlinear permeability 𝜇. To simulate the nonlinear core behavior, one can use the
models given in chapter 1.4.5. We can reformulate all model equations in terms of ℱ
and Φ variables. The Frohlich model can be expressed as

ℱ(Φ) =
𝑐𝑙mag

𝑆
Φ

1− 𝑏
𝑆
|Φ|

= 𝑐Φ
1− 𝑏 |Φ|

(3.7)

or
Φ(ℱ) = ℱ

𝑐 + 𝑏 |𝐹 |
(3.8)

where 𝑐 = 𝑐𝑙mag
𝑆

and 𝑏 = 𝑏
𝑆

and and parameters 𝑐, 𝑏 are given by [74]

𝑐 = 1
𝜇i𝜇0

= 1
𝜇

, (3.9)

𝑏 =
1− 1√

𝜇i

𝐵SAT
. (3.10)

52

The saturation flux density 𝐵SAT and the permeability 𝜇i enable modeling of different
types of the magnetic core. This allows designing transformer models from the
material datasheet and arbitrary transformer dimensions. However, data of measured
transformers are often provided in terms of Φ and ℱ and actual dimensions of
transformer are not specified. Hence, it would be useful to derive parameters of
Frohlich model from measured data. Parameters 𝑐, 𝑏 used in (3.7),(3.8) can be
expressed as

𝑐 = 𝑐𝑙mag

𝑆
= 𝑙mag

𝜇𝑆
= ℛ (3.11)

where 𝑐 is equal to the core reluctance in the linear part of the transfer function and
parameter 𝑏

𝑏 = 𝑏

𝑆
=

1− 1√︁
1

𝑐𝜇0

ΦSAT
. (3.12)

It is possible to derive both parameters from the estimated magnetic reluctance and
saturation flux but better results can be obtained by using LMS parameter fitting
algorithm to derive model parameters.

The magnetic reluctance of the gyrator-capacitor transformer model [46] is
modeled with the nonlinear capacitance and the resistance which are implemented as
the constant capacitor with capacity 𝐶 given by the magnetic permeance 𝐶 = 1/ℛ
with the voltage source controlled by the voltage over the constant capacitor given
by (1.118) and the parallel resistor and the current source controlled by the voltage
over the resistor given by (1.119). The details are shown in Figure 3.2.

ℛm
=

𝐶 𝑣c 𝑟

𝑖r

ℱc ℱrℱm

Figure 3.2: Magnetic part of gyrator-capacitor transformer model.

Because magnetic circuits obey similar rules as electric circuits [86], it is possible
to write the relation ∑︀𝑖ℱ𝑖 = 0 for the magnetic circuit loop and hence total magneto-
motive force over magnetic reluctance ℛm is

ℱm = ℱc + ℱr. (3.13)

Using equations (1.118), (1.119) and the constant capacitor 𝐶 and resistor 𝑟 it is
possible to derive

ℱc = Φ
𝐶

+ 𝑎

⃒⃒⃒⃒
⃒Φ𝐶
⃒⃒⃒⃒
⃒
𝑛

sign(Φ) (3.14)

53

dΦ
d𝑡

= ℱr

𝑟
+ 𝑏

⃒⃒⃒⃒ℱr

𝑟

⃒⃒⃒⃒𝑚
sign(ℱr) (3.15)

where the term dΦ
d𝑡

corresponds to the current in gyrator-capacitor approach of
modeling magnetic circuits. To express the total magneto-motive force ℱm both
equations (3.14),(3.15) are combined. Unfortunately, because of the form of equation
(3.15), the variable ℱr cannot be isolated analytically and it forms only the expression

ℱr =
dΦ
d𝑡
− 𝑏

⃒⃒⃒
ℱr
𝑟

⃒⃒⃒𝑚
sign(ℱr)

𝑟
. (3.16)

The total magneto-motive force ℱm is then

ℱm =
dΦ
d𝑡
− 𝑏

⃒⃒⃒
ℱr
𝑟

⃒⃒⃒𝑚
sign(ℱr)

𝑟
+ Φ

𝐶
+ 𝑎

⃒⃒⃒⃒
⃒Φ𝐶
⃒⃒⃒⃒
⃒
𝑛

sign(Φ) (3.17)

for
ℱr =

∑︁
𝑖

𝑁𝑖𝐼𝑖 −ℱc (3.18)

which can be computed only numerically for ℱm = ∑︀
𝑖 𝑁𝑖𝐼𝑖. However, it is more

practical to approximate ℱr as a function ℱr(dΦ
d𝑡

) which gives

ℱm = ℱc(Φ) + ℱr

(︃
dΦ
d𝑡

)︃
= ℱ

(︃
Φ,

dΦ
d𝑡

)︃
(3.19)

as a function of two variables Φ and dΦ
d𝑡

. The identification of parameters from
datasheet data is given in [85] and from measured data in [46].

The third core model considered in this thesis is the JA core model given by
equations (1.115), (1.116) and (1.117). The JA model is defined for variables 𝐻,
𝐵 but after derivation of the model it can be transformed into ℱ , Φ space with
substitution ℱ = 𝐻𝑙mag and Φ = 𝐵𝑆. Firstly, the derivative d𝑀

d𝐻
in (1.115) is replaced

by time derivatives d𝑀
d𝑡

and d𝐻
d𝑡

d𝑀

d𝐻
= 𝛿

𝑀an −𝑀

𝑘
+ 𝑐

d𝑀an

d𝐻
(3.20)

d𝑀

d𝑡

d𝑡

d𝐻
= 𝛿

𝑀an −𝑀

𝑘
+ 𝑐

d𝑀an

d𝑡

d𝑡

d𝐻
(3.21)

d𝑀

d𝑡
= 𝛿

𝑀an −𝑀

𝑘

d𝐻

d𝑡
+ 𝑐

d𝑀an

d𝑡
(3.22)

where 𝛿 = 𝛿Msign
(︁

d𝐻
d𝑡

)︁
. Subsequently, the magnetization 𝑀 can be substituted by

𝑀 =
(︃

𝐵

𝜇0
−𝐻

)︃
(3.23)

54

derived from (1.117) to get

d
(︁

𝐵
𝜇0
−𝐻

)︁
d𝑡

= 𝛿
𝑀an − 𝐵

𝜇0
−𝐻

𝑘

d𝐻

d𝑡
+ 𝑐

d𝑀an

d𝑡
(3.24)

from (3.22) and

𝑀an = 𝑀s

⎛⎝coth
⎛⎝𝐻 + 𝛼

(︁
𝐵
𝜇0
−𝐻

)︁
𝑎

⎞⎠− 𝑎

𝐻 + 𝛼
(︁

𝐵
𝜇0
−𝐻

)︁
⎞⎠ (3.25)

from (1.116) where 𝐻 = ℱ
𝑙mag

and 𝐵 = Φ
𝑆

. Neither 𝐻 resp. ℱ nor 𝐵 resp. Φ can
be isolated from JA model (3.24) and therefore it can be expressed only in implicit
form

0 = 𝑓JA

(︃
𝐻, 𝐵,

d𝐻

d𝑡
,
d𝐵

d𝑡

)︃
. (3.26)

3.1.2 Basic Input Stage with Transformer

Transformer models cannot be compared only from their equations but they must be
incorporated into a circuit. For this purpose, a simple circuit, which can be found as
an input stage of most of professional audio equipment, was investigated in [4, 5].
The input stage circuit contains a transformer used as a converter from a symmetrical
to an asymmetrical signal. This type of audio transformer consists of two primary
windings and one secondary winding. The circuit schematic of the transformer
connected with two voltage sources, which represent the symmetrical signal, is shown
in Figure 3.3. The resistors 𝑅p1 and 𝑅p2 represent the primary coil resistance, the
resistor 𝑅s is the series combination of the secondary coil resistance and the load
resistance. Symbols 𝑁p1, 𝑁p2 and 𝑁s are numbers of turns of the windings. The
leakage inductance as well as the capacitance of windings are neglected in this model
but they can be easily added according to Figure 3.1. However, audio transformers
are often designed in that way that the influence of the leakage inductance and the
capacitance does not manifest in the audible region [88].

𝑣in1

𝑅p1

𝑁p1

𝑣in2

𝑅p2
𝑁p2

𝑁s

𝑅s

Figure 3.3: A transformer connected with a symmetrical voltage signal source.

55

The circuit in Figure 3.3 contains five unknown variables – 𝑣p1, 𝑣p2, 𝑣s, Φ and ℱ .
Therefore, the following five equations are necessary for the solution of the system

ℱ = 𝑁p1
𝑣in1 − 𝑣p1

𝑅p1
−𝑁p2

𝑣in2 + 𝑣p2

𝑅p2
−𝑁s

𝑣s

𝑅s
, (3.27)

dΦ
d𝑡

= 𝑣p1

𝑁p1
, (3.28)

dΦ
d𝑡

= 𝑣p2

𝑁p1
, (3.29)

dΦ
d𝑡

= 𝑣s

𝑁s
, (3.30)

ℱ = ℛΦ. (3.31)

The first equation is obtained from (3.3) where currents 𝐼p1 and 𝐼p2 are computed
using Ohm’s law from input voltages 𝑣in1 and 𝑣in2. Equations (3.28), (3.29) and
(3.30) are obtained using Farraday’s law for different voltages and equation (3.31)
describes the transformer core behavior. If the model operates with small signals,
then reluctanceℛ is considered as a constant and the whole system is linear. However,
it varies with magneto-motive force ℱ and flux Φ for large signals and models from
previous chapter can be used instead of (3.31). The voltages 𝑣p1, 𝑣p2, 𝑣s are linearly
dependent and as a result it is possible to simplify the equations to

ℱ = 𝑁p1
𝑣in1 −𝑁p1𝑣

𝑅p1
−𝑁p2

𝑣in2 + 𝑁p2𝑣

𝑅p2
−𝑁s

𝑁s𝑣

𝑅s
, (3.32)

dΦ
d𝑡

= 𝑣, (3.33)

ℱ = ℛΦ. (3.34)

To implement the transformer model in the digital domain, the differential
equation (3.33) has to be discretized. Using BE discretization, we can get

Φ[𝑛]− Φ[𝑛− 1]
𝑇

= 𝑣 (3.35)

where 𝑛 denotes the time index and 𝑇 is the sample period.
The final equations for the Frohlich model are

ℱ = 𝑁p1
𝑣in1 −𝑁p1𝑣

𝑅p1
−𝑁p2

𝑣in2 + 𝑁p2𝑣

𝑅p2
−𝑁s

𝑁s𝑣

𝑅s

𝑣 = Φ[𝑛]− Φ[𝑛− 1]
𝑇

ℱ = 𝑐Φ
1− 𝑏 |Φ|

.

(3.36)

56

The equations for the gyrator-capacitor model are

ℱ = 𝑁p1
𝑣in1 −𝑁p1𝑣

𝑅p1
−𝑁p2

𝑣in2 + 𝑁p2𝑣

𝑅p2
−𝑁s

𝑁s𝑣

𝑅s

𝑣 = Φ[𝑛]− Φ[𝑛− 1]
𝑇

𝑣 = ℱr

𝑟
+ 𝑏

⃒⃒⃒⃒ℱr

𝑟

⃒⃒⃒⃒𝑚
sign(ℱr)

ℱ = ℱr + Φ
𝐶

+ 𝑎

⃒⃒⃒⃒
⃒Φ𝐶
⃒⃒⃒⃒
⃒
𝑛

sign(Φ).

(3.37)

And finally equations for the JA model are

ℱ [𝑛] = 𝑁p1
𝑣in1 −𝑁p1𝑣

𝑅p1
−𝑁p2

𝑣in2 + 𝑁p2𝑣

𝑅p2
−𝑁s

𝑁s𝑣

𝑅s

𝑣 = Φ[𝑛]− Φ[𝑛− 1]
𝑇

0 = 𝑓JA

(︃
ℱ [𝑛]
𝑙mag

,
Φ
𝑆

,
ℱ [𝑛]−ℱ [𝑛− 1]

𝑇 𝑙mag
,

𝑣

𝑆

)︃
.

(3.38)

All the circuit equations with different transformer models require numerical
algorithm to solve. Equations (3.36) contain one unknown variable Φ and equations
(3.37) and (3.38) contain unknown Φ and ℱr resp. ℱ . It is also possible to express the
equations in terms of only unknown Φ but problems with numerical stability occurred
in this case. Values of circuit components as well as parameters for all transformer
models are listed in Tables 3.1, 3.2 and 3.3. the Newton-Raphson algorithm was
chosen for numerical solving. The comparison of the computational efficiency can be
found in Table 3.4 where the maximum number and the average number of iterations
is given for each transformer model.

Table 3.1: Values of circuit components of input stage circuit.

𝑅p1 𝑅p2 𝑅s 𝑁p1 𝑁p2 𝑁s

100 Ω 100 Ω 1 kΩ 100 100 100

Table 3.2: Parameter of Frohlich and GC-model of transformer core.

Frohlich GC-model

𝑏 𝑐 𝐶 𝑎 𝑛 𝑟 𝑏 𝑚

255 358 2 · 10−3 1 · 10−5 25 2.3 8.4 4

57

Table 3.3: Parameter of JA-model of transformer core.

𝑀s 𝑎 𝛼 𝑐 𝑘 𝑙mag 𝑆

9.9 · 105 35 9 · 10−5 4.6 · 10−2 26 2.7 · 10−3 3 · 10−3

Table 3.4: Number of iterations of Newton-Raphson method.

Model Frohlich GC-model JA-model

Max 5.00 4.00 53.00
Average 2.93 2.96 12.58

Figure 3.4 shows the output signal comparison for all transformer models. The
input sine wave signal with a frequency of 30 Hz and an amplitude of 150 V was
used. This signal was used to set the transformer core into full saturation. The
hysteresis loop for all transformer models is shown in Figure 3.5.

Results have confirmed prior assumptions. The JA-model provides good modeling
of the hysteresis loop but on the other hand, the computational cost is very high
and problems with numerical stability can also occur foremost in the area where
Φ and ℱ are close to zero. The Frohlich model and GC model have almost the
same computational cost (computational cost of GC-model is higher due to the more
complex model equation) but the advantage is modeling of the hysteresis loop.

System equations can also be expressed in terms of the DK-method, which is
useful for the offline precomputation of nonlinear equations when there are more
system states than the number of nonlinear equations. Substitution of (3.35) into
(3.32) leads to

ℱ [𝑛] =
(︃

𝑁2
p1

𝑅p1
−

𝑁2
p2

𝑅p2
− 𝑁2

s
𝑅s

)︃
Φ[𝑛]− Φ[𝑛− 1]

𝑇
+

+ 𝑁p1 𝑣in1[𝑛]
𝑅p1

− 𝑁p2 𝑣in2[𝑛]
𝑅p2

(3.39)

where magneto-motive force ℱ is the input v of the nonlinear function, the vector of
state variables can be given according to

x[𝑛− 1] = [Φ[𝑛− 1]] (3.40)

and the input vector by

u[𝑛] =
⎡⎣ 𝑣in1[𝑛]

𝑣in2[𝑛]

⎤⎦ . (3.41)

58

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
−200

−150

−100

−50

0

50

100

150

200

Time [s]

O
ut

pu
t v

ol
ta

ge
 [V

]

Frohlich model
GC−model
JA−model

Figure 3.4: Output signal of the input stage circuit.

−500 0 500
−1.5

−1

−0.5

0

0.5

1

1.5

Magnetizing force H[Am−1]

F
lu

x
de

ns
ity

 B
 [T

]

Frohlich model
GC−model
JA−model

Figure 3.5: Hyseresis loop of transformer models used in input stage circuit.

59

The coefficient matrices G, H and K are derived by comparing equations (3.39) and
(1.61) as

G =
[︃(︃
−

𝑁2
p1

𝑅p1
+

𝑁2
p2

𝑅p2
+ 𝑁2

s
𝑅s

)︃
1
𝑇

]︃
, (3.42)

H =
[︁

𝑁p1
𝑅p1

−𝑁p2
𝑅p2

]︁
, (3.43)

K =
[︃(︃

𝑁2
p1

𝑅p1
−

𝑁2
p2

𝑅p2
− 𝑁2

s
𝑅s

)︃
1
𝑇

]︃
. (3.44)

The coefficient matrices A, B and C are derived by comparing (3.35) and (1.59)
as

A = [0] , (3.45)

B =
[︁

0 0
]︁

, (3.46)

C = [1] , (3.47)

and coefficient matrices D, E and F are obtained using (3.30) and (1.60) as

D =
[︂
−𝑁s

𝑇

]︂
, (3.48)

E =
[︁

0 0
]︁

, (3.49)

and
F =

[︂
𝑁s

𝑇

]︂
. (3.50)

The final nonlinear equation is then given by

0 = Gx + Hu + K · Φ(ℱ [𝑛])−ℱ [𝑛] = 𝑝 + 𝐾 · Φ(ℱ [𝑛])−ℱ [𝑛]. (3.51)

The nonlinear function is given in Φ(ℱ [𝑛]). To express the nonlinear equation in
terms of ℱ(Φ[𝑛]), the variable Φ is isolated from (3.39) resulting in

Φ[𝑛] = Φ[𝑛− 1] + ℱ [𝑛](︂
− 𝑁2

p1
𝑅p1𝑇

− 𝑁2
p2

𝑅p2𝑇
+ 𝑁2

s
𝑅s𝑇

)︂
+ 1(︂
− 𝑁2

p1
𝑅p1𝑇

− 𝑁2
p2

𝑅p2𝑇
+ 𝑁2

s
𝑅s𝑇

)︂ (︃−𝑁p1 𝑣in1[𝑛]
𝑅p1

+ 𝑁p2 𝑣in2[𝑛]
𝑅p2

)︃ (3.52)

and thus, matrices G, H and K are following

G = [1] , (3.53)

60

H =
⎡⎣ −𝑁p1(︂

−
𝑁2

p1
𝑅p1𝑇

−
𝑁2

p2
𝑅p2𝑇

+ 𝑁2
s

𝑅s𝑇

)︂
𝑅p1

𝑁p2(︂
−

𝑁2
p1

𝑅p1𝑇
−

𝑁2
p2

𝑅p2𝑇
+ 𝑁2

s
𝑅s𝑇

)︂
𝑅p2

⎤⎦ , (3.54)

K =

⎡⎢⎢⎣ 1(︂
− 𝑁2

p1
𝑅p1𝑇

− 𝑁2
p2

𝑅p2𝑇
+ 𝑁2

s
𝑅s𝑇

)︂
⎤⎥⎥⎦ (3.55)

and the nonlinear equation to be solved is

0 = Gx + Hu + K · ℱ(Φ[𝑛])− Φ[𝑛] = 𝑝 + 𝐾 · ℱ(Φ[𝑛])− Φ[𝑛]. (3.56)

The other matrices remain the same. The solved nonlinear function (3.56) for
Frohlich and GC-model is shown in Figures 3.6 and 3.7. The solution for the Frohlich
model depends only on one input variable 𝑝 and can be easily approximated (as
will be discussed later) to reduce the computational complexity of the simulation
algorithm. The solution for the GC-model further depends on the state variable
Φ[𝑛− 1] and therefore it requires two dimensional approximation. And finally, three
input variables 𝑝, Φ[𝑛− 1] and ℱ [𝑛− 1] are needed for the JA-model.

−6 −4 −2 0 2 4 6

x 10
−3

−4

−3

−2

−1

0

1

2

3

4
x 10

−3

Input p [−]

F
lu

x
Φ

 [W
b]

Figure 3.6: Solution of input stage nonlinear function with Frohlich model.

61

−5

0

5

x 10
−4

−0.01

−0.005

0

0.005

0.01
−5

0

5

x 10
−3

Input p
1
 [−]Input p

2
 [−]

F
lu

x
Φ

 [W
b]

Figure 3.7: Solution of input stage nonlinear function with the GC model.

3.1.3 Push-Pull Tube Amplifier

The second commonly used audio circuit with the audio transformer is a push-
pull tube amplifier. The simulation of the push-pull tube amplifier with different
transformer models was published in [6]. The complete push-pull amplifier consists of
several parts – the phase splitter, two or four power tubes which processes opposite
half-waves of the signal and the output transformer which sums contributions from
opposite power tubes and also a model of a loudspeaker must be included because the
loudspeaker is a frequency dependent load. However, the simulation of the complete
push-pull power amplifier will be described later and only the simulation of the
power tubes part with the output transformer will be considered in this chapter. The
simplified circuit schematic of the power tubes part is shown in Figure 3.8 and values
for circuit elements are listed in Table 3.5. Values were chosen according to Fender
Deluxe Reverb power amplifier [89]. The circuit consist of two 6V6GT pentodes fed
by phase inverted input signals and a three windings transformer. The loudspeaker
is modeled only by the resistor because the output transformer is the main objective
here. The output transformer type is Fender NSC041318. This transformer was
measured in [46] and transformer parameters (see Table 3.6) can be found there as
well. Unfortunately, the exact number of turns per winding is unknown and only the

62

transformer ratio is given. The number of turns per winding has been here chosen as
𝑁1 = 1000, 𝑁2 = 1000 and 𝑁3 = 64, which are more typical in real amplifiers than
values given in [46].

𝑣in1

𝑣in2

𝑁1

𝑁2

𝑅s1

𝑅s2

𝑣ps
𝑁3 𝑅L

1

4

2

5

6

Figure 3.8: Circuit schematic for push-pull power tubes part of the tube power
amplifier.

Table 3.5: Values for circuit elements for push-pull power tubes part of the tube
power amplifier.

Rs1 Rs2 RL N1 N2 N3 Vps

470 Ω 470 Ω 8 Ω 1000 1000 64 394 V

Table 3.6: Parameter of Frohlich and GC-model of the transformer core for the
transformer Fender NSC041318.

𝐶 𝑎 𝑛 𝑟 𝑏 𝑚

24 · 10−3 900 7 7.7 · 10−2 4.5 4

The circuit from Figure 3.8 can be described by equations

𝐺s1 (𝑣ps − 𝑣1)− 𝐼s(𝑣in1, 𝑣1) = 0, (3.57)
𝐺s2 (𝑣ps − 𝑣4)− 𝐼s(𝑣in2, 𝑣4) = 0, (3.58)

(𝑣2 − 𝑣ps)−𝑁1
dΦ
d𝑡

= 0, (3.59)

(𝑣ps − 𝑣5)−𝑁2
dΦ
d𝑡

= 0, (3.60)

−ℱ + 𝑁1𝐼𝑝(𝑣in1, 𝑣1, 𝑣2) + 𝑁2𝐼𝑝(𝑣in2, 𝑣4, 𝑣5) + 𝑁2
3

dΦ
d𝑡

𝐺L = 0, (3.61)

ℱ = 𝑓 (Φ) (3.62)

63

where different transformer core models can be substituted into (3.62) and symbols
𝐺 are conductances of the resistors from Table 3.5. After discretization, the system
can be solved numerically for unknown Φ, 𝑣1, 𝑣2, 𝑣4 and 𝑣5.

Several simulations for different input signals were made to find the effect of
the output transformer to the circuit. All input voltages were biased to −37 V
because the grid circuit is missing in the circuit from Figure 3.8. Figure 3.9 shows
the comparison of output signals of the push-pull amplifier simulation for different
transformer models – linear model, GC-model without modeling the hysteresis effect
and full GC-model. The input signal was a sine wave with a frequency of 30 Hz
and an amplitude of 50 V. One can observe the waveform distortion caused by the
magnetic core saturation. The difference between the simulation with the GC-model
without modeling the hysteresis and the full GC-model is very subtle and therefore,
the GC-model consisting only of the saturation equation (3.14) can be use without
loosing the accuracy of the simulation.

Further, the distortion analysis of the push-pull amplifier with the linear and
nonlinear output transformer model is shown in Figures 3.10 and 3.11. It can be seen
that the model with the nonlinear output transformer adds some distortion in the
area of low frequencies (bellow 120 Hz) and therefore it implies that the nonlinear
model of the transformer should be used because the distortion could be noticeable.
It will be later investigated by listening tests.

0 0.02 0.04 0.06 0.08 0.1
−25

−20

−15

−10

−5

0

5

10

15

20

25

Time [s]

O
ut

pu
t v

ol
ta

ge
 [V

]

Lin. Transformer
Nonlin. Without Hysteresis
Nonlin. With Hysteresis

Figure 3.9: Ouput signals of the push-pull amplifier for different transformer models.

64

10
0

10
1

10
2

10
3

10
4

10
5

−80

−60

−40

−20

0

20

40

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

1st harmonic
2nd harmonic
3rd harmonic
4th harmonic
5th harmonic
6th harmonic
7th harmonic

Figure 3.10: Distortion analysis of the push-pull amplifier with the linear model of
the output transformer.

10
0

10
1

10
2

10
3

10
4

10
5

−80

−60

−40

−20

0

20

40

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

1st harmonic
2nd harmonic
3rd harmonic
4th harmonic
5th harmonic
6th harmonic
7th harmonic

Figure 3.11: Distortion analysis of the push-pull amplifier with the nonlinear model
of the output transformer.

65

3.1.4 Automated Incorporation of Transformer Model into
DK-method

The derivation of DK-method matrices for the push-pull power amplifier can be done
similarly as the derivation of matrices for the input stage circuit in chapter 3.1.2.
However, it is more complicated because of more nonlinear equations in the circuit.
Therefore, it would be beneficial to derive DK-method matrices automatically. Origi-
nal equations (3.57)–(3.62) are not convenient for incorporation of the transformer
model into automated DK-method and therefore they were reformulated into

0 = 𝐺s1 (𝑣ps − 𝑣1)− 𝐼s(𝑣in1, 𝑣1), (3.63)
0 = 𝐺s2 (𝑣ps − 𝑣4)− 𝐼s(𝑣in2, 𝑣4), (3.64)

0 = (𝑣2 − 𝑣ps)−𝑁1
dΦ
d𝑡

, (3.65)

0 = (𝑣ps − 𝑣5)−𝑁2
dΦ
d𝑡

, (3.66)

0 = 𝑁3
dΦ
d𝑡

𝐺L − 𝐼3, (3.67)

0 = −ℱ + 𝑁1𝐼1 + 𝑁2𝐼2 + 𝑁3𝐼3, (3.68)
𝐼1 = 𝐼𝑝(𝑣in1, 𝑣1, 𝑣2), (3.69)
𝐼2 = 𝐼𝑝(𝑣in2, 𝑣4, 𝑣5), (3.70)
ℱ = Φℛ(Φ). (3.71)

The DK-method requires prior component-wise discretization of energy storing
circuit components. The Farraday’s induction law can be discretized by either TR
or BE discretization formula. Using TR, it is possible to derive companion circuit
consisting of conductance 𝐺 and current source 𝑥 according to

𝑣 = 𝑁dΦ
d𝑡

(3.72)
1
2 (𝑣[𝑛] + 𝑣[𝑛− 1]) = 𝑁

𝑇
(Φ[𝑛]− Φ[𝑛− 1]) (3.73)

𝑣[𝑛] = 2𝑁

𝑇
(Φ[𝑛]− Φ[𝑛− 1])− 𝑣[𝑛− 1] (3.74)

𝑣[𝑛] = 2𝑁

𝑇
Φ[𝑛]− 𝑥[𝑛− 1] (3.75)

𝑣[𝑛] = 𝐺Φ[𝑛]− 𝑥[𝑛− 1] (3.76)

where
𝑥[𝑛− 1] = 𝐺Φ[𝑛− 1] + 𝑣[𝑛− 1]. (3.77)

66

The state variable 𝑥 can be updated by the equation derived according to

𝑥[𝑛] = 2𝑁

𝑇
Φ[𝑛] + 𝑣[𝑛] (3.78)

𝑥[𝑛] = 2𝑁

𝑇
Φ[𝑛] + 2𝑁

𝑇
Φ[𝑛]− 𝑥[𝑛− 1] (3.79)

𝑥[𝑛] = 22𝑁

𝑇
Φ[𝑛]− 𝑥[𝑛− 1] (3.80)

𝑥[𝑛] = 2𝐺Φ[𝑛]− 𝑥[𝑛− 1]. (3.81)

Similarly, BE discretization leads to the companion derived from

𝑣 = 𝑁dΦ
d𝑡

(3.82)

𝑣[𝑛] = 𝑁

𝑇
(Φ[𝑛]− Φ[𝑛− 1]) (3.83)

𝑣[𝑛] = 𝑁

𝑇
Φ[𝑛]− 𝑥[𝑛− 1] (3.84)

𝑣[𝑛] = 𝐺Φ[𝑛]− 𝑥[𝑛− 1] (3.85)

where
𝑥[𝑛− 1] = 𝐺Φ[𝑛− 1]. (3.86)

The state update equation is in this case given by

𝑥[𝑛] = 𝐺Φ[𝑛]. (3.87)

Both discretization techniques differ in value of conductance 𝐺 = 𝑁𝛼 where 𝛼 = 2
𝑇

for TR and 𝛼 = 1
𝑇

for BE and in the state update equation.
Discretized equations (3.63) – (3.71) with the linear model of transformer core

ℱ = Φℛ can be expressed in a matrix form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐺s 0 −𝐺s 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
−𝐺s 0 2𝐺s −𝐺s 0 0 1 −1 1 0 0

0 0 −𝐺s 𝐺s 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 𝐺L 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 𝑁1𝛼

0 0 1 0 −1 0 0 0 0 0 𝑁2𝛼

0 0 0 0 0 1 0 0 0 0 𝑁3𝛼

0 0 0 0 0 0 0 𝑁1 𝑁2 𝑁3 ℛ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑖ps

𝑖1

𝑖2

𝑖3

Φ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑖s1(𝑣1)
𝑖p1(𝑣2)

0
𝑖s2(𝑣4)
𝑖p2(𝑣5)

0
𝑣ps

𝑥N1 [𝑛− 1]
𝑥N2 [𝑛− 1]
𝑥N3 [𝑛− 1]

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.88)

67

which has the form of MNA matrix equation and which has been already used
for the derivation of DK-method matrices. The conductance matrix on the LHS
can be divided into a regular part without the transformer model and a part with
the connected transformer model. This division is illustrated in Figure 3.12 left.
The regular part without the transformer model is denoted by symbol S and its
obtaining has been described in chapter 1.3.1 e.g. using the equation (1.57). The
rest of the matrix contains parameters of the transformer. Several parts can be there
further identified, namely connection submatrices which specify which nodes is the
transformer connected to, vectors containing numbers of turns of each winding, the
transformer core parameter and several zero matrices. Thus, the whole conductance
matrix can be built up from submatrices S, Nt, Nw, zero matrices and the magnetic
reluctance parameter ℛ according to Figure 3.12 right.

windings

windings

nodes

nodesS

0

0

0 ℛ𝑁1, 𝑁2, . . . , 𝑁𝑛

𝑁1𝛼

𝑁2𝛼
...

𝑁𝑛𝛼

=

S NT
t 0

Nt 0 Nw𝛼

0 NT
w ℛ

Figure 3.12: Stamp of linear transformer model for conductance matrix

The matrix Nt is the connection matrix with the number of rows given by the
number of windings and the number of columns given by the number of circuit nodes
increased by the number of inputs. For the circuit from Figure 3.8, it has the form

Nt =

⎡⎢⎢⎣
0 1 −1 0 0 0 0
0 0 1 0 −1 0 0
0 0 0 0 0 1 0

⎤⎥⎥⎦ . (3.89)

It can be seen that the first winding is connected to nodes 2 and 3, the second
winding to nodes 3 and 5 and the third winding to node 6 and the reference node.
The matrix Nw is in this case

Nw =

⎡⎢⎢⎣
𝑁1

𝑁2

𝑁3

⎤⎥⎥⎦ (3.90)

68

and generally, the number of rows is given by the number of the windings and it has
one column.

There are also three new state variables 𝑥N1 , 𝑥N2 and 𝑥N3 which must be added
to other state variables. To do that, the energy-storing conductance diagonal matrix
Gx is extended by the vector Nw to

Gxt =
⎡⎣ Gx 0

0 diag (Nw𝛼)

⎤⎦ . (3.91)

Because state variables 𝑥N1 , 𝑥N2 and 𝑥N3 act like capacitors according to equations
(3.81) and (1.102), these state variables have assigned value 1 in matrix Z.

Further, original incidence matrices

Nr =

⎡⎢⎢⎣
1 0 −1 0 0 0
0 0 −1 1 0 0
0 0 0 0 0 1

⎤⎥⎥⎦ , (3.92)

Nu =
[︁

0 0 1 0 0 0
]︁

, (3.93)

No =
[︁

0 0 0 0 0 1
]︁

, (3.94)

Nn =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎦ . (3.95)

and the currently unused matrix Nv must be extended by zero vectors 0 with the
number of columns given by number of windings increased by one according to Nrt =[︁

Nr 0
]︁
, Nvt =

[︁
Nv 0

]︁
, Nut =

[︁
Nu 0

]︁
, Not =

[︁
No 0

]︁
, Nnt =

[︁
Nn 0

]︁
because of the changed size of the conductance matrix. The matrix Nx, which is
also currently empty for the circuit from Figure 3.8, must be modified to

Nxt =

⎡⎢⎢⎢⎢⎢⎣
Nx 0

0
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎦ (3.96)

which adds the state variables 𝑥N1 , 𝑥N2 and 𝑥N3 to appropriate positions on the
RHS of the equation (1.58). However, we need to express the variable Φ from this
equation, which is in a different position in the equation (3.88) and therefore we

69

need the second matrix Nx2 in the form of

Nxt2 =

⎡⎢⎢⎣
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎦ , (3.97)

for the circuit from Figure 3.8 and generally this matrix has the number of rows
given by the number of windings and contains 1 values in the last column otherwise
zeros. The matrices are obtained from

A = 2ZGxtNxt2S−1NT
xt − Z, (3.98)

B = 2ZGxtNxt2S−1
(︁

0 I
)︁T

, (3.99)

C = 2ZGxtNxt2S−1NT
nt, (3.100)

the other matrices are obtained regularly from equations (1.65) - (1.70) using the
new incidence matrices. Finally, the nonlinear function vector is

i(v) =

⎡⎢⎢⎢⎢⎢⎣
−𝑖s(𝑣in1, 𝑣1)
−𝑖p(𝑣in1, 𝑣1, 𝑣2)
−𝑖s(𝑣in2, 𝑣3)
−𝑖p(𝑣in2, 𝑣3, 𝑣4)

⎤⎥⎥⎥⎥⎥⎦ . (3.101)

Similarly, the incorporation of the nonlinear transformer model into the automated
DK-method can be derived. The magnetic reluctance ℛ can not be isolated from
transformer core models and therefore the circuit equation (3.88) was changed to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐺s 0 −𝐺s 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
−𝐺s 0 2𝐺s −𝐺s 0 0 1 −1 1 0 0

0 0 −𝐺s 𝐺s 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 𝐺L 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 𝑁1𝛼

0 0 1 0 −1 0 0 0 0 0 𝑁2𝛼

0 0 0 0 0 1 0 0 0 0 𝑁3𝛼

0 0 0 0 0 0 0 𝑁1 𝑁2 𝑁3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑖ps

𝑖1

𝑖2

𝑖3

Φ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑖s1(𝑣1)
𝑖p1(𝑣2)

0
𝑖s2(𝑣4)
𝑖p2(𝑣5)

0
𝑣ps

𝑥N1 [𝑛− 1]
𝑥N2 [𝑛− 1]
𝑥N3 [𝑛− 1]
ℱ(Φ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.102)

The conductance matrix St can be again decomposed into submatrices according to
Figure 3.13.

The only change in the conductance matrix is the zero value instead of the
magnetic reluctance ℛ. Another change is on the RHS where a nonlinear function

70

S NT
t 0

Nt 0 Nw𝛼

0 NT
w 0

Figure 3.13: Stamp of nonlinear transformer model for the conductance matrix

has been added. Therefore, the incidence vector Nn must be modified to

Nnt =
⎡⎣ Nn 0

0
[︁

0 0 . . . 0 1
]︁ ⎤⎦ . (3.103)

One new row was added to introduce one more nonlinear function in the DK-method
core function. This vector consists of zero values and 1 at the end of the vector
because the equation describing the magnetic circuit is the last one in (3.102).

The last thing to be considered is the DK-method nonlinear core function. The
standard form

0 = p + Ki (v)− v (3.104)

can be used for the linear and nonlinear transformer with Frohlich model. The
nonlinear model function 𝑖 = 𝑓(𝑣) is equal to (3.7) for Frohlich model where 𝑖

corresponds with ℱ and 𝑣 with Φ and the whole nonlinear function vector is then

i(v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑖s(𝑣in1, 𝑣1)
−𝑖p(𝑣in1, 𝑣1, 𝑣2)
−𝑖s(𝑣in2, 𝑣3)
−𝑖p(𝑣in2, 𝑣3, 𝑣4)
− 𝑐𝑣5

1−𝑏|𝑣5|

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.105)

This general form is, however, not suitable for the other magnetic core models and
the nonlinear core function in the particular form must be introduced. To implement
the GC-model with the DK-method, the equation (3.104) is rewritten and GC-model
functions are added forming together

0 = 𝑝1 + 𝑘11𝑖1 + 𝑘12𝑖2 + 𝑘13𝑖3 + 𝑘14𝑖4 + 𝑘15 (𝑖5 + 𝑣6)− 𝑣1

0 = 𝑝2 + 𝑘21𝑖1 + 𝑘22𝑖2 + 𝑘23𝑖3 + 𝑘24𝑖4 + 𝑘25 (𝑖5 + 𝑣6)− 𝑣2

0 = 𝑝3 + 𝑘31𝑖1 + 𝑘32𝑖2 + 𝑘33𝑖3 + 𝑘34𝑖4 + 𝑘35 (𝑖5 + 𝑣6)− 𝑣3

0 = 𝑝4 + 𝑘41𝑖1 + 𝑘42𝑖2 + 𝑘43𝑖3 + 𝑘44𝑖4 + 𝑘45 (𝑖5 + 𝑣6)− 𝑣4

0 = 𝑝5 + 𝑘51𝑖1 + 𝑘52𝑖2 + 𝑘53𝑖3 + 𝑘54𝑖4 + 𝑘55 (𝑖5 + 𝑣6)− 𝑣5

0 = 𝑣5[𝑛]− 𝑣5[𝑛− 1]
𝑇

+ 𝑖6

(3.106)

71

where 𝑖1 = −𝑖s(𝑣in1, 𝑣1), 𝑖2 = −𝑖p(𝑣in1, 𝑣1, 𝑣2), 𝑖3 = −𝑖s(𝑣in2, 𝑣3), 𝑖4 = −𝑖p(𝑣in2, 𝑣3, 𝑣4)
are functions given by screen and plate current models of the both pentodes. The
nonlinear functions 𝑖5 and 𝑖6 come from the GC-model as

𝑖5 = −
(︂

𝑣5

𝐶
+ 𝑎

⃒⃒⃒⃒
𝑣5

𝐶

⃒⃒⃒⃒𝑛
sign(𝑣5)

)︂
(3.107)

and
𝑖6 = −

(︂
𝑣6

𝑟
+ 𝑏

⃒⃒⃒⃒
𝑣6

𝑟

⃒⃒⃒⃒𝑚
sign(𝑣6)

)︂
(3.108)

where 𝑣5 = Φ and 𝑣6 = ℱr. Because the number of nonlinear equation in (3.106) can
differ for different circuit topologies, it can be rewritten into more useful and general
form

0 = p + Ki (v)− v + KN𝑣N+1

0 = 𝑣N[𝑛]− 𝑣N[𝑛− 1]
𝑇

+ 𝑖N+1

(3.109)

where 𝑁 is the constant determining number of nonlinear equations and KN is the
𝑁 -th column of the K matrix and the last nonlinear function 𝑖N+1 is not included in
the vector i (v).

3.2 Simulation of Circuits with Operational Am-
plifier

Another commonly used circuit component which has not been discussed well in
real-time audio effect simulations is the operational amplifier (OPA). The operational
amplifier is usually used as the active component of analog filters which can often
be found in audio effects circuits. The real-time simulation of analog filters with
the operational amplifier was presented in [22]. This work was, however, focused on
simple circuits and moreover, the ideal model of the operational amplifier was used.
The results showed that it is possible to use the ideal model still with good accuracy.
However, there are circuits where the more complex model of the operational amplifier
must be used e.g. Low Frequency Oscillator (LFO) circuits.

The operational amplifiers are usually simulated as macro models built up by
subcircuits consisting of elementary components modeling the operational amplifier
on different levels of complexity [68]. For the case of the real-time audio effect
modeling, the ideal, a linear or a behavioral nonlinear model can be used instead
of complex OPA macro models. These models can be used because of the limited
frequency bandwidth (𝑓 < 20 kHz) which allows to use frequency independent models
of operational amplifiers. Further, operational amplifiers designed for audio circuits
contain a JFET differential input stage which is characterized by the huge input

72

resistance and thus the input resistance can be often neglected without loosing
the accuracy of the simulation. The ideal model of an operational amplifier is
characterized by infinite amplification. The linear model can be described by

𝑣out = 𝐴 (𝑣+ − 𝑣−) (3.110)

where 𝐴 is the open-load amplification and 𝑣+ is the input voltage at the non-inverting
input and 𝑣− is the input voltage at the inverting input of the operational amplifier.

The nonlinear model of the operational amplifier can be implemented as the
behavioral model i.e. by a function which emulates the behavior of the output voltage.
A suitable function is the hyperbolic tangens function which can be used for both
simulation of limited amplification and output voltage saturation. The nonlinear
function can be implemented according to

𝑣out = 𝑣EE +
(︂1

2 tanh (𝑎 (𝑣+ − 𝑣−)) + 0.5
)︂

(𝑣CC − 𝑣EE) (3.111)

where 𝑣EE is the negative power supply voltage and 𝑣CC is the positive power supply
voltage and the parameter 𝑎 can be used for modeling the different amplification
factor 𝐴. The amplification of the model (3.111) is determined by the slope 𝑓

′(𝑥) of
the function. Therefore, we need to find the first derivative around operating point
𝑥 = 𝑣+ − 𝑣− = 0. The first derivative can be derived as

𝑓
′(𝑥)𝑥=0 = 0.5𝑎

(︁
1− tanh2 (𝑎𝑥)

)︁
(𝑣CC − 𝑣EE)

= 0.5𝑎 (𝑣CC − 𝑣EE)
(3.112)

which allows isolating the parameter 𝑎 as

𝑎 = 2𝐴

(𝑣CC − 𝑣EE) (3.113)

where 𝐴 is the desired open-load amplification of the model.
The proposed model was tested on two basic circuits – an inverting amplifier and

an inverting comparator with schematics given in Figure 3.14.
The nonlinear equation

0 = 𝑅2

𝑅1 + 𝑅2
𝑣in + 𝑅1

𝑅1 + 𝑅2

(︃
𝑣EE +

(︃
tanh(−𝑎𝑣)

2 + 0.5
)︃

(𝑣CC − 𝑣EE)
)︃
− 𝑣 (3.114)

for unknown variable 𝑣 on the inverting OPA input terminal can be derived for the
inverting amplifier from Figure 3.14 left. The values of components were 𝑅1 = 10 kΩ,
𝑅2 = 10 kΩ, 𝑣EE = −9 V, 𝑣CC = 9 V and 𝐴 = 100000. The equation was solved
numerically and the resulting transfer function is shown in Figure 3.15.

Similarly, the comparator circuit can be described by the equation

0 = 𝑅1

𝑅1 + 𝑅2

(︃
𝑣EE +

(︃
tanh (𝑎 (𝑣 − 𝑣in))

2 + 0.5
)︃

(𝑣CC − 𝑣EE)
)︃
− 𝑣 (3.115)

and its transfer function is shown in Figure 3.16. Both simulated circuits have the
proper transfer function, which proves the validity of the proposed model.

73

𝑅1 𝑅2

−
+

−
+

𝑅2

𝑅1

Figure 3.14: Circuit schematic for the inverting amplifier (left) and comparator
(right).

−20 −15 −10 −5 0 5 10 15 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

Input voltage V
in

 [V]

O
ut

pu
t v

ol
ta

ge
 V

ou
t [V

]

Figure 3.15: Transfer function of the inverting amplifier with model of OPA for
real-time processing.

3.2.1 Incorporation of Operational Amplifier Model into Au-
tomated DK-method

Because the circuits with operational amplifiers are usually much more complex than
the circuits in Figures 3.14 and 3.15, the automated derivation of circuit equations
would be beneficial. During the process of the derivation of the DK-method, a similar
approach, as was used for circuits with the audio transformer, can be used. Firstly,
the whole circuit without operational amplifiers can be analyzed using the standard
automated DK-method to get the conductance matrix S consisting of resistors and
discretized models of inductors and capacitors.

Subsequently, the operational amplifier is modeled as a nonlinear voltage con-

74

−20 −15 −10 −5 0 5 10 15 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

Input voltage V
in

 [V]

O
ut

pu
t v

ol
ta

ge
 V

ou
t [

V
]

Figure 3.16: Transfer function of the inverting comporator with model of OPA for
real-time processing.

trolled voltage source. Therefore, the model of the operational amplifier can be
added into the system similarly as any other voltage source resulting in extension of
the conductance matrix S according to

Sopa =
⎛⎝ S NT

opa−O

Nopa−O 0

⎞⎠ (3.116)

where the incidence matrix Nopa−O holds information where the output of the
operational amplifier is connected. The matrix Nopa−O can be for one operational
amplifier in form

Nopa−O =
[︁
· · · 0 1 −1 0 · · ·

]︁
(3.117)

where value 1 determines to which node the output is connected and −1 determines
from which node the output current is sourced, which is often the reference node and
then the −1 element will be missing. The total number of columns of the Nopa−O

matrix is given by the number of columns of the matrix S.
If the circuit operates in such range of voltages that the saturation of the

operational amplifier does not occur, the linear model of the operational amplifier
given by (3.110) can be used and in this case, the conductance matrix Sopa is
constructed according to

Sopa =
⎛⎝ S NT

opa−O

Nopa−O + ANopa−I 0

⎞⎠ (3.118)

where A is the diagonal matrix with the amplification factor 𝐴 for particular
operational amplifiers on the diagonal and Nopa−I is the incidence matrix specifying

75

which nodes the inputs of the operational amplifier are connected to. For one
operational amplifier, it can be in form

Nopa−I =
[︁
· · · 0 −1 1 0 · · ·

]︁
(3.119)

where −1 specifies the inverting input and 1 the non-inverting input. If modeling
the input resistance of the operational amplifier is desired, the conductance matrix
Sopa is given by

Sopa =
⎛⎝ S + NT

opa−IGopa−inNopa−I NT
opa−O

Nopa−O + ANopa−I 0

⎞⎠ (3.120)

where Gopa−in is the diagonal matrix with input conductances of particular operational
amplifiers on the diagonal.

DK-method matrices are computed using equations (1.62) – (1.70) but first of
all, incidence matrices Nr, Nv, Nx, No, Nu and Nn must be extended by zero
submatrices similarly as matrices for the transformer model. This approach is valid
only for the linear model of the operational amplifier. In the case of the nonlinear
model, nonlinear DK-method equations must be extended. Firstly, the control voltage
must be obtained. The control voltage is the voltage between the terminals of the
operational amplifier and these terminals have already been specified by the matrix
Nopa−I. However, the construction of the K matrix differs from (1.70) because the
nonlinear function is not connected to the control voltage nodes but is connected as
the additional voltage source. Therefore, the K matrix can be obtained from

K =
⎛⎝ Nn 0

Nopa−I 0

⎞⎠S−1
opa

⎛⎝⎛⎝ Nn

0

⎞⎠+
⎛⎝ 0

I

⎞⎠⎞⎠ (3.121)

where the identity matrix is used to express the connection of the nonlinear voltage
controlled voltage sources of the operational amplifiers and Nn is the incidence
matrix of nonlinear components without considering the operational amplifiers. The
conductance matrix Sopa is computed from (3.116) or from (3.120) where A is zero
matrix. The matrix C is derived using

C = 2GxZ
(︁

Nx 0
)︁

S−1
opa

⎛⎝⎛⎝ Nn

0

⎞⎠+
⎛⎝ 0

I

⎞⎠⎞⎠ (3.122)

and the matrix F from

F =
(︁

No 0
)︁

S−1
opa

⎛⎝⎛⎝ Nn

0

⎞⎠+
⎛⎝ 0

I

⎞⎠⎞⎠ . (3.123)

The other matrices are obtained in standard way.

76

The method was tested on several circuits with operational amplifiers. Simula-
tions of the amplifier and filter circuits provided good results but circuits with the
operational amplifier connected as the comparator showed non-realistic behavior
although equations are correct. The numerical algorithm found another root of
the nonlinear equation that is mathematically valid but does not respect the phys-
ical behavior. The situation is illustrated in Figure 3.17. The nonlinear equation
𝑣 = 𝑝 + 𝐾𝑖 (𝑣) describing the circuit with the comparator in DK-method form
is plotted for LHS = 𝑣 − 𝑝 (blue and red color) and RHS = 𝐾𝑖 (𝑣) (green color)
separately. LHS varies with the input voltage signal 𝑉in while the RHS is constant.
The solution of the nonlinear equation is given by the intersection of both sides
(marked with the circles). One can see that there are up to three roots of the equation
for 𝑉in = 1 V and 𝑉in = −1 V which are inside the area of the comparator hysteresis.
The numerical solver tends to find the root near the zero but physically valid roots
are the other ones. Outside the hysteresis loop (𝑉in = 6 V and 𝑉in = −6 V) there is
only one root which can be found by the numerical algorithm without any special
requirements on the initial solution of the nonlinear equation. However, it was shown
in the previous chapter that it is possible to solve the circuit with the comparator.
That is because the equation (3.115) is in different form which can be characterized
as 𝑣 = 𝐾𝑖 (𝑣 + 𝑝). This situation is illustrated in Figure 3.18. There are also more
roots in the hysteresis area but they are much more suitably situated. Once the
saturation (one state of the comparator) is achieved, the position of the root does
not change until the opposite input voltage 𝑉in, lying outside the hysteresis loop,
is applied. Then, there is only one root of the nonlinear equation representing the
opposite state of the comparator. Figure 3.19 shows similar analysis of the circuit
with the operational amplifier connected as the amplifier. It can be seen that there
is always only one root of nonlinear equations.

As a result, the standard nonlinear core of the DK-method must be rearranged
into the form 𝑣 = 𝐾𝑖 (𝑣 + 𝑝), which is however complicated for systems with more
nonlinear equations and practically it is suitable only for systems with only one
nonlinear equation describing the comparator. For more complex systems, a proper
initial solution of the nonlinear equation must be used. Performed simulations showed
that it is sufficient to estimate unknown comparator input voltages derived for both
states of the comparator, use both of them as the initial solution and finally use the
root for which the whole system converges.

77

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

Voltage [V]

V
ol

ta
ge

 fu
nc

tio
n

f(
v)

 [V
]

 V
in

 = 1 V

 V
in

 = 6 V

 V
in

 = −1 V

 V
in

 = −6 V

Figure 3.17: Solution of the nonlinear equation for the comparator circuit using
DK-method.

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

Voltage [V]

V
ol

ta
ge

 fu
nc

tio
n

f(
v)

 [V
]

 V
in

 = 1 V

 V
in

 = 6 V

 V
in

 = −1 V

 V
in

 = −6 V

Figure 3.18: Solution of the nonlinear equation for the comparator circuit using
equation (3.115).

78

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

Voltage [V]

V
ol

ta
ge

 fu
nc

tio
n

f(
v)

 [V
]

 V
in

 = 1 V

 V
in

 = 6 V

 V
in

 = −1 V

 V
in

 = −6 V

Figure 3.19: Solution of the nonlinear equation for the inverting amplifier.

The DK-method was tested with a simulation of the basic LFO generator con-
sisting of two operational amplifiers. The circuit schematic is shown in Figure 3.20
and values in Table 3.7. The circuit can be described by the matrices

Nr =

⎡⎢⎢⎣
1 −1 0 0
0 0 1 −1
−1 0 0 1

⎤⎥⎥⎦ , (3.124)

Gr =

⎡⎢⎢⎣
1

𝑅1
0 0

0 1
𝑅2

0
0 0 1

𝑅3

⎤⎥⎥⎦ , (3.125)

Nx =
[︁

0 1 −1 0
]︁

, (3.126)

Gx =
[︂

𝐶

2𝑇

]︂
, (3.127)

NOPA−O =
⎡⎣ 0 0 1 0

1 0 0 0

⎤⎦ , (3.128)

NOPA−I =
⎡⎣ 0 −1 0 0

0 0 0 1

⎤⎦ . (3.129)

79

All these matrices form according to (3.116) the conductance matrix SOPA given by

SOPA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐺1 + 𝐺3 −𝐺1 0 𝐺3 0 1
−𝐺1 𝐺1 + 𝐺c −𝐺c 0 0 0

0 −𝐺c 𝐺c + 𝐺2 −𝐺2 1 0
−𝐺3 0 −𝐺2 𝐺2 + 𝐺3 0 0

0 0 1 0 0 0
1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.130)

and DK-method matrices are computed from equations (3.121), (3.122), (3.123) and
(1.62), (1.63), (1.65), (1.66), (1.68) and (1.69) where all the incidence matrices N are
extended by zero matrix according to the context, incidence matrix Nn is the empty
matrix and the output matrix is given by

No =
[︁

0 0 1 0 0 0
]︁

. (3.131)

𝑅2

4
𝑅3

+
−

1
𝑅1

2

𝐶1

−
+

3

Figure 3.20: Circuit schematic of the simple LFO generator.

Table 3.7: Values of circuit components for the LFO generator.

𝑅1 𝑅2 𝑅3 𝐶 𝑉ee 𝑉cc 𝐴

25 kΩ 33 kΩ 47 kΩ 5 µF −4.5 V 4.5 V 1 · 105

Figure 3.21 shows the transient analysis of the LFO generator circuit. The output
signal (blue color) is shown as well as the output signal of the comparator (green
color) and the state variable 𝑋 (red color). This simulation proved the validity of
automated derivation of DK-method matrices and also proved that it is possible to
use the DK-method for simulation of self-oscillating circuits.

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time [s]

O
ut

pu
t v

ol
ta

ge
 [V

]

Output
Comparator Output
X

Figure 3.21: Transient analysis of the LFO generator simulated with the DK-method.

3.3 Further Considerations Regarding DK-Method

This chapter will address further thoughts which might be useful during designing
the simulation algorithm. This covers especially the linearization of the simulated
circuit in terms of state-space description and further BE discretization during the
automated derivation of DK-method matrices.

The linearization of the circuit can be useful in cases where the input signal is
sufficiently small and where, as the result, the produced nonlinear distortion is so low
that it is not perceived by human hearing. This allows omitting the nonlinear part
of the state-space representation which requires numerical solving and the circuit
can be represented in the standard state-space form

ẋ = Ax + Bu, (3.132)
y = Dx + Eu (3.133)

with slightly different notation of matrices (D instead of C and E instead of D)
used to respect the nonlinear state-space representation notation. The state-space
model can be of course constructed from linear small signal models of the nonlinear
circuit component but parameters strongly depend on the operating point position.
Therefore, the nonlinear model of the circuit must be constructed in order to find
the nonlinear DC solution and operating points anyway. And once the nonlinear
model has been constructed, it is needless to build the new linear circuit model from
the beginning and it is easier to simplify the nonlinear model.

81

Considering the nodal analysis, small signal models of nonlinear circuit compo-
nents are represented with admittance parameters – 𝑦 parameters which are derived
as

𝑦 = 𝜕𝑖

𝜕𝑣

⃒⃒⃒⃒
⃒
vDC

(3.134)

in operating point 𝑣DC of the device for one port component. A two port component
is described by four 𝑦 parameters⎡⎣ 𝑦11 𝑦12

𝑦21 𝑦22

⎤⎦ =

⎡⎢⎣ 𝜕𝑖1
𝜕𝑣1

⃒⃒⃒
vDC

𝜕𝑖1
𝜕𝑣2

⃒⃒⃒
vDC

𝜕𝑖2
𝜕𝑣1

⃒⃒⃒
vDC

𝜕𝑖2
𝜕𝑣2

⃒⃒⃒
vDC

⎤⎥⎦ = J (𝑣1, 𝑣2) (3.135)

where J (𝑣1, 𝑣2) is the Jacobian matrix of nonlinear functions 𝑖1 = f (v1, v2), 𝑖2 =
f (v1, v2) determining the nonlinear model of the given device. Similarly, the whole
nonlinear part of the circuit can be considered as a multi-port nonlinear device given
by functions i = f (v) whose 𝑦 parameters are determined by the Jacobian matrix in
the operating point. Subsequently, the equation (1.56) can be modified into

S

⎛⎝ V
is

⎞⎠ =
⎛⎝ NT

x

0

⎞⎠x +
⎛⎝ 0

I

⎞⎠u−

⎛⎝ NT
n

0

⎞⎠JvDC

(︁
Nn 0

)︁⎛⎝ V
is

⎞⎠ (3.136)

where JvDC is the Jacobian matrix of the whole system. The linearized part can be
moved to LHS to get⎛⎝S +

⎛⎝ NT
n

0

⎞⎠JvDC

(︁
Nn 0

)︁⎞⎠⎛⎝ V
is

⎞⎠ =
⎛⎝ NT

x

0

⎞⎠x +
⎛⎝ 0

I

⎞⎠u. (3.137)

The voltages across energy storing components can be expressed

Vx =
(︁

Nx 0
)︁⎛⎝S +

⎛⎝ NT
n

0

⎞⎠JvDC

(︁
Nn 0

)︁⎞⎠−1⎛⎝⎛⎝ NT
x

0

⎞⎠x +
⎛⎝ 0

I

⎞⎠u

⎞⎠
(3.138)

and similarly output voltages are given by

Vo =
(︁

No 0
)︁⎛⎝S +

⎛⎝ NT
n

0

⎞⎠JvDC

(︁
Nn 0

)︁⎞⎠−1⎛⎝⎛⎝ NT
x

0

⎞⎠x +
⎛⎝ 0

I

⎞⎠u

⎞⎠ .

(3.139)
Subsequently, state-space matrices can be computed from

A = 2ZGx
(︁

Nx 0
)︁

S−1
Lin

(︁
Nx 0

)︁T
− Z, (3.140)

B = 2ZGx
(︁

Nx 0
)︁

S−1
Lin

(︁
0 I

)︁T
, (3.141)

D =
(︁

No 0
)︁

S−1
Lin

(︁
Nx 0

)︁T
, (3.142)

E =
(︁

No 0
)︁

S−1
Lin

(︁
0 I

)︁T
(3.143)

82

where

SLin =
⎛⎝S +

⎛⎝ NT
n

0

⎞⎠JvDC

(︁
Nn 0

)︁⎞⎠ (3.144)

and other matrices are equal to matrices used for the nonlinear state-space repre-
sentation. Note that the linearized model does not include DC offset signal vector.
This is because linearizes small signal models usually do not include DC offsets. The
only missing matrix is the Jacobian matrix JvDC defined in the operating point. The
operating point can be determined from DC solution of the nonlinear state-space
model. The direct computation of the unknown voltages from the equation (1.28) is
not possible due to the unknown state vector x. However, x does not change with
the constant input vector u and therefore the state vector x can be expressed from
the state update equation

x = Ax + Bu + Ci⇒
x = (I−A)−1 (Bu + Ci)

(3.145)

and it can be substituted into the nonlinear equation (1.28) and rearranged according
to

0 = Gx + Hu + Ki(vDC)− vDC ⇒
0 = G (I−A)−1 (Bu + Ci) + Hu + Ki(vDC)− vDC ⇒
0 =

(︁
G (I−A)−1 B + H

)︁
u +

(︁
G (I−A)−1 C + K

)︁
i(vDC)− vDC

(3.146)

and using this equation it is possible to compute DC voltages vDC without knowing
the state vector x and subsequently compute the Jacobian matrix JvDC .

The computational cost of the linearized system can be further reduced by
converting the state-space representation into the transfer function 𝐻(𝑧) according
to the formula [90]

𝐻(𝑧) = D (𝑧I−A)−1 B + E (3.147)

and subsequently, the whole system can be implemented as a standard digital filter
which provides very efficient implementation.

The TR discretization was considered during the automated derivation of DK-
method matrices so far. However, there might be situations where the BE discretiza-
tion is desired. This foremost affects discretized inductors and capacitors. The
current flowing through these devices continues fulfilling the equation (1.101), only
the value of conductances have to be changed to 𝐺x = 𝐶

𝑇
for the capacitor and

𝐺x = 𝑇
𝐿

for the inductor. The state update equation for the capacitor

𝑥[𝑛] = 𝐺x𝑣[𝑛] (3.148)

while the state update equation for the inductor remains in the same form

𝑥[𝑛] = −𝐺x𝑣[𝑛] + 𝑥[𝑛− 1] (3.149)

83

as with TR discretization. Both equations can be unified by

𝑥[𝑛] = 𝑍𝐺x𝑣[𝑛] +
(︂

𝑍 − 1
2

)︂
𝑥[𝑛− 1] (3.150)

where 𝑍 has the same value as in (1.102). If we introduce a parameter 𝑚 equal to
𝑚 = 1 for BE discretization and 𝑚 = 2 for TR discretization, equations (1.102) and
(3.150) can be unified to

𝑥[𝑛] = 𝑚𝑍𝐺x𝑣[𝑛] +
(︂

𝑍 − 2 + 𝑚

3−𝑚

)︂
𝑥[𝑛− 1]. (3.151)

This change affects matrices A, B and C, which are further given as

A = 𝑚ZGx
(︁

Nx 0
)︁

S−1
(︁

Nx 0
)︁T
−
(︃

Z− I (2 + 𝑚)
3−𝑚

)︃
, (3.152)

B = 𝑚ZGx
(︁

Nx 0
)︁

S−1
(︁

0 I
)︁T

, (3.153)

C = 𝑚ZGx
(︁

Nx 0
)︁

S−1
(︁

Nn 0
)︁T

(3.154)

and similarly matrices for the linearized system.
The last remark concerns the sign of nonlinear device models 𝑖 = 𝑓(𝑣). The

automated DK-method defined by equations (1.62) – (1.70) requires the opposite sign
of the device models defined in the chapter 1.4 as it was shown e.g. in the equation
(3.105). This is because nonlinear currents act as current sources in equation (1.56)
and the positive sign means in terms of MNA that the current flows into a node.
However, in reality, these nonlinear currents flow out of the node and therefore,
nonlinear device models must be used with the opposite sign or the equation (1.56)
should be in form

S

⎛⎝ V
is

⎞⎠ =
⎛⎝ NT

x

0

⎞⎠x +
⎛⎝ 0

I

⎞⎠u−

⎛⎝ NT
n

0

⎞⎠ in (3.155)

which leads to defining the matrices C, F and K as

(3.156)

C = −𝑚ZGx
(︁

Nx 0
)︁

S−1
(︁

Nn 0
)︁T

, (3.157)

F = −
(︁

No 0
)︁

S−1
(︁

Nn 0
)︁T

, (3.158)

K = −
(︁

Nn 0
)︁

S−1
(︁

Nn 0
)︁T

. (3.159)

However, both approaches are possible and valid.

84

3.4 Summary

This chapter adopted the automated DK-method based on incidence matrices of
circuit components introduced by Holters and Zölzer in [66]. The contribution is the
extension of this approach by incorporating more complicated circuit component
models. The first circuit component is the model of the audio transformer. The
ideal, linear and nonlinear model of the transformer was discussed. The nonlinear
model of the transformer requires use of the nonlinear magnetic core model. Three
models of the magnetic core were tested on two circuits – the input stage with
the transformer and the push-pull amplifier. The Jiles-Atherton model provides
very good simulation of the magnetic core but it is not very suitable for real-time
applications. The Frohlich model and the GC model are more suitable for these
purposes. The GC model provides modeling of the hysteresis when compared to the
Frohlich model. However, as it was shown, the hysteresis manifests very slightly in
the output signal. The GC model however also provides better modeling of the shape
of the magnetization curve. Therefore, it was chosen as the model used in further
simulations. Finally, the method of automated incorporating of the transformer
model into the DK-method was introduced, which can facilitate design of real-time
simulation algorithms

The second part dealt with the incorporation of the operational amplifier into the
DK-method. First of all, the memoryless nonlinear model of the operational amplifier
was designed. Secondly, this model was tested on two basic circuits – the amplifier
and the comparator. This model was also successfully integrated into the DK method.
In addition to the saturation and the finite amplification of the operational amplifier,
it is also possible to consider the input resistance of the operational amplifier. The
output resistance is not considered in this model, but it can be easily simulated by
connecting a resistor in series with the output port of the operational amplifier. The
validity of incorporation of the operational amplifier model into the DK-method was
proved on simulation of the simple LFO generator.

The last part discussed foremost the linearization of the circuit using the designed
nonlinear model of the circuit. This enables reduction of the computational complexity
if the circuit operates almost in the linear area. This reduction is not very high because
the nonlinear system converges usually in one iteration in these cases. However,
when the system is linearized, it is possible to convert the state-space representation
into the transfer function representation and implement it as a standard digital filter
which can offer more efficient implementation. This linearization can be useful when
designing the simulation of audio effects based on active filters (equalizer, phaser
effect, etc.)

85

4 APPROXIMATION OF IMPLICIT NONLIN-
EAR CIRCUIT EQUATIONS

Most of modern algorithms for the simulation of nonlinear audio systems require
numerical algorithms to compute the output signal. This is due to the implicit form
of nonlinear equations which describe the simulated system

y = f(y, u, . . .). (4.1)

It is sometimes possible to find an analytical solution of 4.1, however it depends
on nonlinear function f(. . .) complexity and in general, the solution must be
transfered into a nonlinear function root finding problem. The direct usage of
numerical algorithms is however not very convenient for real-time applications. It
is foremost due to two properties – high computational complexity and variable
computational complexity, which does not allow the efficient utilization of the DSP
system computational power. Moreover, the numerical solution can also diverge if
suitable initial conditions are not used or the solution can converge to local minimum
or to another root (as was shown in the previous chapter).

Therefore, the usage of approximation of the function (4.1) is essential for real-
time applications. It ensures the constant computational complexity and unique
solutions. The computational complexity is also lower than the computational
complexity of numerical algorithms but it depends on particular approximation
algorithm. The drawback is necessity of look-up tables with stored function values.
The look-up tables can require large amount of data stored in memory of the DSP
system especially when a multi-dimensional function is approximated. The choice
of the approximation algorithm is result of trade-off between the computational
complexity, accuracy of approximation and size of the look-up tables and thus,
various approximation algorithms will be examined in this chapter.

4.1 Precomputation of Nonlinear Systems

The precomputation of the nonlinearity is the first step of the approximation of
given nonlinearity. The term precomputation means obtaining function values
of a nonlinear equation or set of nonlinear equations in form of (4.1) where y is
the vector of unknown variables for any input values given by the input vector
u. This process requires numerical solution of the nonlinear equation using the
multi-dimensional Newton method for each element of input vector, and thus this
process is computational very demanding. Moreover, boundary values of the input
vector can hold large values and the numerical solution does not have to converge to

86

the right solution if sufficiently close initial values are not known. To cope with this
problem, the initial estimation can be derived from the solution for neighbouring
values of the input vector u. The estimation can be sufficiently accurate if there
is small step between the neighbouring input values. It is also practical to start
the precomputation from zero input values and continue with positive and negative
input values separately up to the boundary values of input vector. Further, Yeh in
his work [22] suggested to use the homotopy to aid convergence. The range of the
input vector can be determined from input signal properties but unfortunately, the
step of the input values has to be chosen empirically.

While the dimension of the nonlinearity depends on the number of circuit nodes
or nonlinear equations, the dimension of the approximated function depends on
the number of inputs of the nonlinearity. The approximation of the nonlinearity is
not limited only for the certain method of simulation (e.g. MNA method, WDF or
K-method), but the approximating function can have different dimension for each of
those methods.

4.1.1 Precomputation for approximation of nonlinear ODEs

The number of unknowns of the MNA method to be solved is equal or higher than
the number of circuit nodes, which is more than the number of nonlinear functions
in the given circuit. But the dimension of approximation depends on the number
of inputs and states of energy-storing components in this case. For some circuits,
the number of inputs is lower than the number of nonlinear equations and therefore
the direct approximation of the equations requires lower dimension and also lower
computational cost than if the DK-method is used for the simulation. The direct
approximation is convenient e.g. for the simulation of blocks used with the modified
block-wise simulation of a guitar preamp, which will be discussed in chapter 5.1.

Nonlinear equations to be solved are in form of

0 = f(𝑣in, 𝑣x1, 𝑣x2, · · · , 𝑣xM) (4.2)

where 𝑣in is the input voltage or the input signal value and 𝑣x1, 𝑣x2,..., 𝑣xM are
voltages on energy-storing components. The system has 𝑁 = 𝑀 + 1 inputs and
a particular solution for a combination of inputs. As a result of precomputation,
voltages on all nodes are known, but not all of them are needed. Only the output
signal node voltage and new voltages on energy-storing components will be used and
they have to be approximated. The system thus have 𝑁 outputs and if the functions
to be approximated are denoted as 𝑓out, 𝑓x1, 𝑓x2,...,𝑓xM, the whole system may be

87

rewritten into
𝑣out[𝑛] = 𝑓out(𝑣in[𝑛], 𝑣x1[𝑛], 𝑣x2[𝑛], · · · , 𝑣xM[𝑛])

𝑣x1[𝑛 + 1] = 𝑣x1[𝑛] + 𝑇𝑓x1(𝑣in[𝑛], 𝑣x1[𝑛], 𝑣x2[𝑛], · · · , 𝑣xM[𝑛])
𝑣x2[𝑛 + 1] = 𝑣x2[𝑛] + 𝑇𝑓x2(𝑣[𝑛]in, 𝑣x1[𝑛], 𝑣x2[𝑛], · · · , 𝑣xM[𝑛])

...
𝑣xM[𝑛 + 1] = 𝑣xM[𝑛] + 𝑇𝑓xN(𝑣in[𝑛], 𝑣x1[𝑛], 𝑣x2[𝑛], · · · , 𝑣xM[𝑛])

(4.3)

where 𝑇 is the sample period, and 𝑛 denotes the time index. It would be of course
possible to approximate the new voltages on the energy-storing components directly,
instead of 𝑣x1[𝑛 + 1] = 𝑣x1[𝑛] + 𝑇𝑓x1(𝑣in[𝑛], 𝑣x1[𝑛], 𝑣x2[𝑛], · · · , 𝑣xM[𝑛]), but this form
enables independence of the approximating functions on the sampling frequency.

The construction of the functions 𝑓out, 𝑓x1, 𝑓x2,...,𝑓xM will be shown on the simple
example given by the circuit schematic in Figure 4.1. The circuit can be described
by equations

0 = G2
vinG1 + vgG2

G1 + Gg + G2
− vgG2 − ig

0 = vc1 − vk −
vkGk − ip − ig

Ckfs
0 = vpsGp − vpGp − VpGL − ip

(4.4)

with unknown variables vg, vk, vp, the capacitor voltage vc1 from the last sample
period, the input signal voltage vin and triode nonlinear currents ig and ip. This
means that the system contains two inputs vc1 and vin.

𝑅1 𝑅2

𝑅k𝑅g

𝑅p

𝐶k

𝑣in

𝑣ps

𝑣out

𝑅L

Figure 4.1: Circuit schematic for triode tube amplifier.

After the precomputation for combinations of inputs, all variables vg, vk, vp are
known for the given input. The output function to be approximated is directly the
plate voltage vp

𝑓out (𝑣in, 𝑣c1) = 𝑣p (𝑣in, 𝑣c1) .

88

The state update function 𝑓c1 (𝑣in, 𝑣c1) can be derived from the discretized capacitor
model

vc1[n + 1] = vc1[n] + T vkGk − ip (vgk, vpk)− ig (vgk, vpk)
Ck

= vcm[n] + Tfc1 (vin, vc1)
(4.5)

where 𝑣gk = 𝑣g − 𝑣k and 𝑣pk = 𝑣p − 𝑣k. After the approximation of functions
𝑓out (𝑣in, 𝑣c1) and 𝑓c1 (𝑣in, 𝑣c1), the real-time simulation only requires the computation
of

𝑣out[n] = 𝑓out (𝑣in[n], vc1[n− 1]) ,

𝑣c1[n] = 𝑣c1[n− 1] + Tfc1 (vin[n], vc1[n− 1])

for each input sample.
The computational complexity depends on the number of circuit inputs 𝑁 (input

signal and states). The computation of one output signal sample requires 𝑀 add
operations, 𝑀 multiply operations and 𝑁 computations of approximating functions.
Therefore, the total computational complexity markedly depends on the chosen
approximation.

4.1.2 Precomputation for approximation of the state-space
nonlinearity

The core of the state-space nonlinearity (DK-method) is given by the implicit
formulation

v[𝑛] = Ki[𝑛] + p[𝑛] = K𝑓
(︁
v[𝑛]

)︁
+ p[𝑛] (4.6)

for unknown variables v. We look for approximating functions in form i = f(p).
Considering the precomputation of such system, the maximal dimension of the
precomputed solution will be given by the number of inputs p, however some input
parameters p can be constant for some circuit topologies and therefore the dimension
can be lower than the maximal and it is equal to the number of non-constant
inputs. For parametric circuits, one has to also consider that the K coefficient
matrix is dependent on parameter values and then the dimension of the precomputed
solution must be extended by the number of variable K coefficients, which leads
to the maximal dimension given by 𝑁2 + 𝑁 where 𝑁 is the number of nonlinear
functions. The solution can also be precomputed for variable circuit parameters as
input variables to the system – this is more efficient when the number of circuit
parameters is lower than the number of K coefficients which are being changed

89

by these parameters. As a result in both cases, interpolation functions of high
dimensions must be used even for quite simple circuits.

Firstly, let us consider only circuits with constant circuit components. The
nonlinearity is being precomputed for inputs p. The ranges can be determined from
p = Gx + Hu for the combination of the minimal and maximal values of input u
and state x variables. The step of the input vector values has to be chosen again
empirically.

If the number of variable inputs (this excludes constant power supply voltage
inputs) and states is lower than the number of inputs p, which is equal to the number
of nonlinear circuit currents, the dimension of approximating functions is higher than
it necessarily has to be and the approximation is then redundant. Some inputs p
can be constant or linearly dependent and this dependence can be find out from the
examination of matrices G and H. Inputs and states can be concatenated into one
input vector and similarly matrices G and H. The inputs p are then given by

p =
[︁

G H
]︁ ⎡⎣ x

u

⎤⎦ (4.7)

The equation can be further supplemented with the information about constant
inputs

p =
[︁

G H
]︁

uconst

⎡⎣ x
u

⎤⎦ (4.8)

where Uconst is the diagonal matrix with ones for variable inputs and zeros for constant
inputs on the main diagonal. Linearly independent and non-constant inputs can be
found using the Singular Value Decomposition (SVD). The number of variable inputs
is given by the number of non-zero singular values of the matrix P =

[︁
G H

]︁
uconst

and positions of linearly dependent or constant inputs p are given by zero rows of
the matrix Σ of SVD. This analysis is useful for the simulation of more complex
systems where the dependence of inputs is not obvious at the first sight.

Parametric circuits are characteristic with variable K matrix coefficients and
therefore the K matrix coefficients or directly values of parametric circuit components
are additional inputs of approximating functions and thus the precomputation must
include the numerical solution for these additional inputs. Ranges of K matrix
coefficients are computed from the DK-analysis of the circuit for the minimal and
maximal values of given variable parameters or they are directly given by the
minimal and maximal values of parameters. But parameter values are never given
very precisely, especially in case of analog circuits with potentiometers and therefore
parameter input values do not have to be sampled as with small step as the input
parameters p and often it is sufficient to precompute the nonlinear function only for
the boundary values of parameters.

90

4.2 Brief Overview of Function Approximation Tech-
niques

This chapter gives a brief overview of several algorithms for function approximations.
Discussed approximation algorithms can be found in literature [91, 92, 93]. The
algorithms can be generally divided into least square error approximation algorithms
and interpolation algorithms. The least square error approximation minimizes
the overall error but the approximating function does not have to go through the
function values. The polynomial least square error approximation with polynomial
coefficients computed from the Vandermonde matrix is the most suitable algorithm
from this group. However, as it has been already mentioned in chapter 1.2.3, the
approximation of transfer functions in wider range of input values requires high order
polynomials which are inefficient to compute. For these cases, much more suitable
approach is to use an interpolation between tabulated function values. It is also
possible to construct an interpolating polynomial going through tabulated function
values. This polynomial can be e.g. the Langrage polynomial. This approximation
is however computationally very inefficient until the Neville’s algorithm is used for
constructing the Langrage polynomial. But this approximation also leads to the high
order polynomial when the nonlinear transfer function is approximated in the wider
range and moreover, the approximating polynomial can be bad-behaved between the
tabulated values.

The most suitable algorithms are therefore algorithms based on the piece-wise
interpolation e.g. the linear interpolation or the spline interpolation. From the
quality of the approximation point of view, individual algorithms differ foremost in
smoothness of the overall approximating function. The smoothness of the approxi-
mating function is related to 𝑟-derivatives continuity and can be categorized by the
𝐶𝑟 class.

Because the aim is also to determine computational complexity of several ap-
proximation algorithms, formulas as well as brief comparison is given in Appendix
A.

4.3 Implementation and comparison of approxi-
mation of 1-D function

The efficient implementation of approximating functions is very important task when
implementing the simulation algorithm in real-time. This chapter is focused on the
comparison of algorithms reviewed in the previous chapter. All of these algorithms
are based on the interpolation between tabulated function values. The key aspect of

91

the efficient implementation is, together with the implementation of the interpolating
algorithm, efficient looking up of function values used for interpolation. There are
plenty of approaches for looking up the values. They are usually based on the linear
or binary searching of the table key given by input value 𝑥 in the sorted look-up
table or array. In this case, the input key value 𝑥 is the interpolation break point
𝑥𝑖. Both these methods do not provide the constant computational cost of the
searching but the computational cost depends on the size of the look-up table, which
can be quite large. However, it is also possible to derive the index of the searched
function value 𝑓(𝑥) in the look-up table directly from the input value 𝑥 – it means
assigning an arbitrary independent variable 𝑥 to an integer interval 𝑖. First of all,
consider a uniform grid of the input vector with the step denoted by Δ with these
properties: the step Δ must be sufficiently small to capture the shape of the function.
The very small Δ can also be used for the approximation of discontinuous function
which is transfered into a very steep continuous function. The variable 𝑥 can be
a possibly negative fractional number while the interval 𝑖 must be a nonnegative
integer. Therefore, we introduce the mapping function

𝑖 = ⌊𝑚𝑥⌋+ 𝑜 (4.9)

where 𝑚 denotes the multiplier constant and 𝑜 the interval offset and ⌊⌋ is floor
function. Values of 𝑚 and 𝑜 will depend on interpolation break points in such
way that if 𝑥 is the break point, then the term 𝑚𝑥 will be an integer number.
The multiplier constant can be found as 𝑚 = 1

Δ . The vector xbreaks which holds
interpolation break point values and is used for the precomputation of the nonlinear
function is constructed according to

xbreaks = nΔ (4.10)

where
n = {𝑁min, 𝑁min + 1, . . . ,−1, 0, 1, . . . , 𝑁max − 1, 𝑁max} (4.11)

where 𝑁min =
⌊︁

𝑥min
Δ

⌋︁
, 𝑁max =

⌊︁
𝑥max

Δ

⌋︁
+ 1 and the offset 𝑜 = −𝑁min. When the

vector xbreaks is known, the precomputation of the nonlinear function for xbreaks

values proceeds. After the precomputation of the nonlinear function, interpolation
coefficients can be computed, if the spline interpolation is chosen. The processing
using the uniform grid is the following:

1. interval computation 𝑖 = ⌊𝑚𝑥⌋+ 𝑜,
2. fractional part computation 𝑥p = 𝑥− 𝑥breaks[𝑖],
3. and finally the interpolation 𝑦 = 𝑓(𝑥p).
To compare computational costs of each interpolation, all the interpolation

algorithms were implemented in C language according to pseudocodes in Appendix
B with input parameters 𝑖 and 𝑥 and which returns interpolated function value.

92

The computational cost of all algorithms is compared in Figure 4.2 and Table
4.1. Figure 4.2 shows real conditions – time which was needed for the computation
of one million of interpolations. It was tested on 2.6 GHz Intel processor. On the
contrary, Table 4.1 shows the number of mathematical instructions per algorithm.
Reader may notice different results. The cubic spline interpolation type 1 is in real
conditions faster than the linear interpolation although they have the same number of
mathematical operations. Further, the computational cost of the Newton polynomial
is more than two times slower than the Hermite cubic interpolation in real conditions
but there is not as big difference in the number of mathematical operations. These
differences are caused by the proximity of division operations in algorithms and it
confirms the fact that the mathematical division is not suitable operation for the
efficient implementation of algorithm.

Algorithms can also be compared with regards to memory demands. The linear
interpolation, the Newton polynomial interpolation and the Hermite interpolation
are so called local interpolations. It means that they require only function values
stored in look-up tables. The cubic spline interpolation of type 2 and 3 needs also
precomputed second derivatives and memory demands are therefore two times higher.
The cubic spline interpolation type 1 has the biggest memory demands. It requires
storing of four coefficients per spline interval and it has therefore four times higher
memory demands. If there is enough memory, this type of interpolation is the
most convenient because it offers the most efficient implementation as well as 𝐶2

smoothness. If the memory demands are limited, one has to chose from other types
of algorithms according to available memory and computational power.

Table 4.1: Computational cost comparison of interpolation algorithms.

Alg. Spline 1 Spline 2 Spline 3 Newton Hermite Linear

Math. oper. 7 18 19 27 26 7

4.3.1 Non-uniform Grid Interpolation

The uniformly gridded interpolation has the advantage of the direct computation of
the interpolation interval but it is not very convenient for the interpolation of sharp
nonlinear transfer functions. It is because of a very small step of the grid that is
required to capture the shape of the transfer function, which leads to using of big
look-up tables. In contrast, the non-uniformly gridded interpolation contains more
data points and smaller step of the grid in steep parts of the transfer function while
sampling of almost linear parts of the transfer function can be quite sparse.

93

Spline 1 Spline 2 Spline 3 Newton Hermite Linear
0

0.005

0.01

0.015

0.02

0.025

T
im

e
[s

]

Approximation type

Figure 4.2: Computational cost of interpolation algorithms. Measured for one million
of interpolations.

When using the non-uniformly gridded interpolation, some points from the original
uniformly spaced breaks vector xbreaks are removed, yielding more complicate interval
computation. If the origin approach of the index computation introduced by (4.9) is
used, the interval indexes are not consistent with the new ones anymore. Nevertheless,
this problem can be solved by the introduction of a simple interval mapping function
given by the vector 𝑓mapping which will translate interval indexes from the uniform
grid allowing direct access to data to the nonuniform grid in such way that several
original indexes will belong to one new index. The new computational scheme for
the 1-D interpolation is

1. interval computation 𝑗 = ⌊𝑚𝑥⌋+ 𝑜,
2. interval translation 𝑖 = 𝑓mapping[𝑗],
3. fractional part computation 𝑥p = 𝑥− 𝑥breaks[𝑖],
4. and finally the interpolation 𝑦 = 𝑓(𝑥p).

This modification enables the reduction of the look-up table while there is only
one extra assignment 𝑖 = 𝑓mapping[𝑗]. The drawback is that extra memory for
mapping data is required, but mapping functions are one dimensional even for more
dimensional spline interpolations, which will be exploited later.

The difficult task is the determination which data can be removed without loosing
the accuracy of the interpolation. Unimportant data can be found by the sequential
removing of data points and testing of the impact to the interpolated transfer function.

94

𝑣in 𝑅1

𝐶1
𝐷1 𝐷2

𝑅2 𝐶3

𝐶2

𝑅3 𝑅4

𝑣out

Figure 4.3: Circuit schematic of the nonlinear core of the Distortion effect.

The ideal combination of the reduced original data can be found if all combination of
data points for all lengths 2, 3, . . . , 𝑁 where 𝑁 is the length of original breaks vector
are examined. The number of combinations for one reduced data length 𝐾 is given by
the binomical coefficient and the total number for all possible vector lengths given by
2(𝑁−2) − 1. As it can be seen, this approach leads to the combination explosion with
the increasing length 𝑁 and therefore this approach is not computable for higher 𝑁 .

In order to reduce the number of data points somehow, the algorithm given by
the pseudo-code in Algorithm 1 is introduced. There is a constraint given by the
constant access to data – the data must remain on positions of the regular grid and
cannot be scattered. The algorithm removes unimportant data points 𝑥, 𝑓 from
the regular grid. It requires testing data 𝑥test and interpolated function values 𝑓test

for given input 𝑥 which are computed using the interpolation above the full set of
data points. The algorithm goes through all data points except the boundary points.
Each point is removed and the interpolation for all input data 𝑥 is executed. Then
the data point with the smallest error between the interpolation above the reduced
set of data points and full data points is removed. After that, next iterations above
the reduced data points are performed until the error is equal to the given maximal
approximation error 𝑒max. Finally, the mapping function between the uniform and
nonuniform grid must be determined. The algorithm has quadratic computational
complexity 𝑂(𝑁2).

The algorithm was tested on the nonuniform grid piece-wise approximation of
the transfer function of the guitar distortion effect Boss Metal zone. The circuit of
the nonlinear distortion block, which is known as the diode clipper circuit, is given
by the schematic in Figure 4.3 and circuit component values in Table 4.2. If the
DK-method analysis is exploited, the nonlinear transfer function is one dimensional.
All mentioned types of interpolation techniques were used to find which type of
the interpolation needs the lowest amount of data. The nonlinear function was
precomputed with values between −20 and 20 with the step 0.25 and total number
of data points is 161. The chosen approximation error for Algorithm 1 was 0.005.

95

input : 𝑥test, 𝑥, 𝑓, 𝑒max

output : 𝑥n, 𝑓n

𝑓test2 ← interpolate(𝑥test, 𝑥, 𝑓);
𝑥n ← 𝑥;
𝑓n ← 𝑓 ;
𝑁 ←length(𝑥𝑛);
while 𝑒 < 𝑒max do

for 𝑖← 1 to 𝑁 − 2 do
𝑥r ← removePointFromVector (𝑖, 𝑥n);
𝑓r ← removePointFromVector (𝑖, 𝑓n);
𝑓test2 ← interpolate(𝑥test, 𝑥r, 𝑓r);
𝑒vec[𝑖]← max(𝑓test2 − 𝑓test2);

end
𝑒,𝑝← min(𝑒vec);
𝑥n ← removePointFromVector (𝑝, 𝑥n);
𝑓n ← removePointFromVector (𝑝, 𝑓n);
𝑁 ← 𝑁 − 1

end
Algorithm 1: Nonuniform 1-D data reduction.

Table 4.2: Element values for schematic on Figure 4.3

𝑅1 𝑅2 𝑅3 𝑅4 𝐶1 𝐶2 𝐶3

2.2 kΩ 10 kΩ 4.7 kΩ 100 kΩ 10 𝜇F 15 nF 1 𝜇F

Results of the data reduction are available in Table 4.3 and Figures 4.4, 4.5, and
4.6. Table 4.3 shows the number of data points which are needed by each interpolation
algorithm to give the error lower than 0.005. The lowest number of data points
is needed by the cubic spline interpolation type 1 and 2, but these interpolations
requires additional data to construct the spline (see the row: coefficients, the cubic
spline type 1 requires four coefficients per interval and the cubic spline type 2 requires
two coefficients per interval). The lowest number of data for the interpolation is
needed by the Newton polynomial interpolation but this algorithm has the highest
computational cost and it does not offer 𝐶1 smoothness.

Considering trade-off between the required data amount and the computational
cost, the best approximation is provided by the cubic spline type 2. Quality of
the simulation can be seen from Figures 4.4, 4.5. The first one shows the original
precomputed function and the approximated transfer function for all interpolation

96

algorithms. The second figure shows the difference between the original transfer
function and the approximated transfer function. All approximated functions have
error smaller than the given maximal error 0.005. The average error is shown in
Figure 4.6. It shows that the linear interpolation has the highest average error.
Surprisingly, the Hermite interpolation provides the lowest average error although
it offers only 𝐶1 continuity. It is because of the higher number of data points and
also because of the higher error of the spline interpolation at boundaries of the
transfer functions. This error could be probably lowered by use of different boundary
conditions and thus different type of cubic spline interpolation. This simulation used
the natural cubic spline with zero second derivatives at spline boundaries.

Table 4.3: Comparison of the number of data points required for approximation of
diode clipper circuit.

Alg. Spline 1 Spline 2 Spline 3 Newton Hermite Linear

Points 15 15 29 21 26 34
Coefficients 60 30 58 21 26 34

−10 −5 0 5 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Input

O
ut

pu
t

Cubic Spline 1
Cubic Spline 2
Cubic Spline 3
Newton Pol.
Hermite Cubic
Linear Interp.
Orig

Figure 4.4: Approximation of the transfer function of the diode clipper circuit.

97

−10 −5 0 5 10
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Input

E
rr

or

Cubic Spline 1
Cubic Spline 2
Cubic Spline 3
Newton Pol.
Hermite Cubic
Linear Interp.

Figure 4.5: Error of the approximations of the transfer function of the diode clipper
circuit.

Spline 1 Spline 2 Spline 3 Newton Hermite Linear
0

0.5

1

1.5

2

2.5

3
x 10

−3

A
ve

ra
ge

 e
rr

or

Approximation type

Figure 4.6: Average error of the approximations of the transfer function of the diode
clipper circuit.

98

4.4 Approximation of N-D function

Algorithms for approximation of the 1-D nonlinear transfer function are not sufficient
for most of simulated audio effect circuits and therefore, they must be extended
into more dimensions. This extension can be made by the recursive calling of
the 1-D interpolation function above multi-dimensional data and the dimension is
being lowered until the last 1-D interpolation function is called. For instance, the
2-dimensional linear interpolation computes two 1-D linear interpolations

𝑓(𝑥𝑖) = linInterp(𝑓(𝑥𝑖, 𝑦𝑖), 𝑓(𝑥𝑖, 𝑦𝑖+1)),
𝑓(𝑥𝑖+1) = linInterp(𝑓(𝑥𝑖+1, 𝑦𝑖), 𝑓(𝑥𝑖+1, 𝑦𝑖+1))

for the variable 𝑦 and then one 1-D linear interpolation is computed from the results

𝑓(𝑥, 𝑦) = linInterp(𝑓(𝑥𝑖), 𝑓(𝑥𝑖+1))

for 𝑥 variable in the next iteration. The 𝑁 -dimensional linear interpolation requires
recursive calling of

𝑁interp = 2𝑁 − 1 (4.12)

1-D linear interpolation in 𝑁 iterations. The same principle can be exploited for
other interpolation algorithms. The Hermite cubic and the Newton polynomial 1-D
interpolation work with quartet of data points and therefore the 2-D interpolation
must compute four 1-D interpolations in the first iteration. The total number of 1-D
interpolations is

𝑁interp = 4𝑁 − 1
3 (4.13)

for the 𝑁 -dimensional interpolation.
A little different situation is with spline interpolations because they work with

more data (spline coefficients) than just function values. The spline interpolation in
more dimensions is available using the tensor product. In case of 2-D splines, the
interpolation is in the form of

𝑓(𝑥, 𝑦) =
3∑︁

𝑖=0

3∑︁
𝑗=0

𝑐𝑖,𝑗𝑥
𝑖𝑦𝑗 (4.14)

where 𝑐𝑖,𝑗 are spline coefficients. Totally, 16 spline coefficients are required for one
function evaluation. The first iteration computes four 1-D spline interpolations with
coefficients 𝑐𝑖,𝑗 and the variable 𝑦 producing the new set of coefficients 𝑐𝑖. The second
iteration computes one 1-D spline interpolation with coefficients 𝑐𝑖 and the variable 𝑥.
Generally, 4𝑁 −1

3 1-D spline interpolations must be computed for the 𝑁 -dimensional
cubic spline interpolation and

𝑁coef = 4𝑁 (4.15)

99

spline coefficients must be stored in memory for one spline interval. The total number
of coefficients is given by

𝑁coef = 4𝑁
𝑁∏︁
𝑖

𝑁𝑖 (4.16)

where 𝑁𝑖 is the number of intervals in the break points vector in 𝑖-th dimension.
Similarly to the 1-D cubic spline interpolation, not all spline coefficients must

be stored. The 1-D spline interpolation must known function values and continuous
second derivative values to compute all spline coefficients. Because the function is
multivariate, the continuous second derivative consists of partial derivatives 𝑐𝑥(𝑥, 𝑦) =
𝜕𝑓(𝑥,𝑦)

𝜕𝑥2 , 𝑐𝑦(𝑥, 𝑦) = 𝜕𝑓(𝑥,𝑦)
𝜕𝑦2 and cross derivative 𝑐𝑥𝑦(𝑥, 𝑦) = 𝜕𝑓(𝑥,𝑦)

𝜕𝑥2𝑦2 in case of the 2-D
function and similarly in higher dimensions. If we denote these derivatives and the
function values as coefficients, the number of coefficients which must be stored is

𝑁coef = 2𝑁
𝑁∏︁
𝑖

𝑁𝑖 (4.17)

which is 2𝑁 times lower than if full spline coefficients are stored. The computational
scheme for the 2-D interpolation is following. Firstly, spline coefficients for the variable
𝑦 are computed from stored function values 𝑓(𝑥, 𝑦) and derivative 𝑐𝑦(𝑥, 𝑦) and the
evaluation of the spline gives new function values 𝑓(𝑥) to be interpolated for the
variable 𝑥. Similarly, the derivative 𝑐(𝑥) is evaluated from spline coefficients computed
from the stored partial derivative 𝑐𝑥, (𝑥, 𝑦) and the cross derivative 𝑐𝑥,𝑦(𝑥, 𝑦). The
first iteration computes four unknown spline coefficients and two spline interpolations.
The second iteration computes two unknown spline coefficients from values 𝑓(𝑥) and
𝑐(𝑥) computed in the previous iteration and one spline interpolation to get the final
interpolated function value. The total number of 1-D spline interpolations needed by
the 𝑁 -dimensional interpolation is 2𝑁 − 1.

Multi-dimensional versions of algorithms were compared with regards to memory
demands and the computational cost. Figure 4.7 shows the dependency on the
number of mathematical operations on interpolation dimension for each algorithm.
The lowest number, except the 1-D interpolation, has the linear interpolation. The
cubic spline interpolation of type 1 is useful up to the 2-D interpolation, other types
of spline interpolation offer lower computational costs for higher number of dimension.
This due to fact that, although they have to compute spline coefficients during the
interpolation, they compute only 2𝑁 − 1 of 1-D spline interpolations while the cubic
spline 1 computes 4𝑁 −1

3 1-D spline interpolations.
Figure 4.8 shows memory demands for the 𝑁 -th dimension of each algorithm.

Local interpolation algorithms – the linear interpolation, the cubic Hermite and the
Newton polynomial interpolations – have the lowest memory demands. The number
of points in break points vectors in each dimension is 20. Considering the size of

100

1 2 3 4 5 6
10

0

10
1

10
2

10
3

10
4

10
5

Number of dimensions

N
um

be
r

of
 m

at
h.

 o
pe

ra
tio

ns

Cubic Spline 1
Cubic Spline 2
Cubic Spline 3
Newton Pol.
Hermite Cubic
Linear Interp.

Figure 4.7: Number of operations required by 𝑁 -dimensional interpolation.

look-up tables on the order of megabytes, these interpolations are capable of the 5-D
interpolation if break vectors have around 20 break points. Spline interpolations can
be used maximally for 3-D or 4-D interpolations, depending on the number of break
points.

1 2 3 4 5 6
10

0

10
2

10
4

10
6

10
8

10
10

10
12

Number of dimensions

N
um

be
r

of
 s

to
re

d
co

ef
fic

ie
nt

s

Cubic Spline 1
Cubic Spline 2
Cubic Spline 3
Newton Pol.
Hermite Cubic
Linear Interp.

Figure 4.8: Number of coefficients to be stored for 𝑁 -dimensional interpolation.
Spline interpolation 2 and 3 are the same as well as Linear, Hermite and Newton are
the same.

101

Real conditions were also tested. Figure 4.9 shows the computational cost for
one million interpolations and numbers of interpolations, which can be computed in
real-time for one sample with sampling frequencies 48 kHz and 192 kHz on 2.6 GHz
Intel processor, are given in Table 4.4 and 4.5.

1 2 3 4 5
10

−3

10
−2

10
−1

10
0

10
1

Number of dimensions

T
im

e
[s

]

Cubic Spline 1
Cubic Spline 2
Cubic Spline 3
Newton Pol.
Hermite Cubic
Linear Interp.

Figure 4.9: Computation time of one million 𝑁 -D interpolations.

Table 4.4: Maximal number of interpolations per sample for 𝑓s = 48 kHz.

Dim. Spline 1 Spline 2 Spline 3 Newton Hermite Linear

1-D 5210 3470 2980 833 1740 4170
2-D 801 386 372 167 282 992
3-D 342 107 101 43 77 563
4-D 109 30 27 11 20 311
5-D 26 6 7 2 4 96

Results show that the lowest computational cost is provided by the linear inter-
polation and the cubic spline interpolation type 1. The dependence of the spline
interpolation real computational cost on the interpolation dimension is in contrast
with the theoretical computational cost given in Figure 4.7. The real computational
cost does not increase as rapidly as the theoretical and the cubic spline interpolation
type 1 provides the lower computational cost than other spline interpolations. This
is because of the compiler parallel optimization (see chapter 4.4.2 for details). It

102

Table 4.5: Maximal number of interpolations per sample for 𝑓s = 192 kHz.

Dim. Spline 1 Spline 2 Spline 3 Newton Hermite Linear

1-D 1300 868 744 208 434 1040
2-D 200 96 93 41 70 248
3-D 85 26 25 10 19 141
4-D 27 7 6 2 5 77
5-D 6 1 1 0 1 24

is also obvious that the maximal dimension to work in real time is three or four,
especially if higher sampling frequencies are used, which is desired to suppress the
aliasing distortion.

4.4.1 Non-uniform grid interpolation

The previous chapter showed that the number of interpolation coefficients to be stored
increases rapidly with increasing dimension of interpolation algorithm. Therefore, the
number of break points in break points vectors must be as low as possible. The higher
order interpolation can make use of the non-uniform interpolation with constant
access to data in the same way as the 1-D interpolation. The break points must lay
on the original uniformly spaced grid. Some of them can be removed but they still
have to build the regular grid although non-uniformly spaced. Further, mapping
functions for breaks vectors are required for each dimension. These mapping vectors
are however only one dimensional. The computational scheme is similar to the 1-D
interpolation. For instance, the 2-D spline interpolation type 1 is computed according
to:

1. 𝑖 = ⌊𝑚x𝑥⌋+ 𝑜x,
2. 𝑗 = ⌊𝑚y𝑦⌋+ 𝑜y,
3. 𝑥part = 𝑥− 𝑥breaks[𝑖],
4. 𝑦part = 𝑦 − 𝑦breaks[𝑗],
5. 𝑎 = ((𝑐1,𝑖,𝑗𝑦p + 𝑐2,𝑖,𝑗)𝑦p + 𝑐3,𝑖,𝑗)𝑦p + 𝑐4,𝑖,𝑗,
6. 𝑏 = ((𝑐5,𝑖,𝑗𝑦p + 𝑐6,𝑖,𝑗)𝑦p + 𝑐7,𝑖,𝑗)𝑦p + 𝑐8,𝑖,𝑗,
7. 𝑐 = ((𝑐9,𝑖,𝑗𝑦p + 𝑐10,𝑖,𝑗)𝑦p + 𝑐11,𝑖,𝑗)𝑦p + 𝑐12,𝑖,𝑗,
8. 𝑑 = ((𝑐13,𝑖,𝑗𝑦p + 𝑐14,𝑖,𝑗)𝑦p + 𝑐15,𝑖,𝑗)𝑦p + 𝑐16,𝑖,𝑗,
9. 𝑓 = ((𝑎𝑥p + 𝑏)𝑥p + 𝑐)𝑥p + 𝑑.

A difficult task again is to find which data can be removed without loosing the
accuracy of the transfer function approximation. It is more complicated than the 1-D
case because while some data points are being removed from the input vector in case

103

of the 1-D interpolation, whole rows or columns must be removed from the function
values matrix in case of the 2-D interpolation and similarly in higher dimensions,
let us say that a 𝑁 − 1 dimensional subarray is being removed from the given 𝑁 -D
array of function values. Otherwise the algorithm for data reduction is similar to its
1-D version and is given by pseudocode in Algorithm 2.

input : 𝑥test, 𝑥, 𝑓, 𝑒max, 𝑑𝑖𝑚

output : 𝑥n, 𝑓n

𝑓test2 ← interpolate(𝑥test, 𝑥, 𝑓);
𝑥n ← 𝑥,𝑓n ← 𝑓 ;
while 𝑒 < 𝑒max do

for 𝑖𝑑𝑖𝑚← 1 to 𝑑𝑖𝑚 do
for 𝑖← 1 to length(𝑥𝑛[𝑖𝑑𝑖𝑚])− 2 do

𝑥r[𝑖𝑑𝑖𝑚]← removePointFromVector (𝑖, 𝑥n[𝑖𝑑𝑖𝑚]);
𝑓r ← removeSubArray (𝑖, 𝑓n, 𝑖𝑑𝑖𝑚);
𝑓test2 ← interpolate(𝑥test, 𝑥r, 𝑓r);
𝑒vec[𝑖]← max(𝑓test2 − 𝑓test2);

end
end
𝑒, 𝑝, 𝑖𝑑𝑖𝑚,← min(𝑒vec);
𝑥n[𝑖𝑑𝑖𝑚]← removePointFromVector (𝑝, 𝑥n[𝑖𝑑𝑖𝑚]);
𝑓n ← removeSubArray (𝑝, 𝑓n, 𝑖𝑑𝑖𝑚);

end
Algorithm 2: Nonuniform N-D data reduction.

4.4.2 Parallel evaluation of interpolations

The computation of the 𝑁 -D interpolation consists of the computation of multiple 1-D
interpolations. For instance, considering the 2-D cubic spline interpolation with the
computational scheme given in the previous section, it consists of four independent
1-D interpolations with different spline coefficients but the same variable 𝑦. This task
is very convenient for the parallel computing using the Single Instruction Multiple
Data (SIMD) processing, which means the same mathematical operation with multiple
data. As a result of the parallelization, these four 1-D interpolations can be computed
at the same time reducing the computational cost of the interpolation. The higher
dimension of the interpolation, the higher number of 1-D interpolation can be
parallelized and it depends only on the DSP system architecture how many of parallel
computation units are available. On the other hand, it means that the interpolation
algorithm code must be optimized for the given DSP system architecture and the

104

given processor and it can not be universal if the best performance has to be achieved.
For instance, we will consider ordinary modern personal computer processors. The
SIMD technology is available via the Streaming SIMD Extensions (SSE) instruction
set extension [94]. This extension supports the horizontal as well as the vertical
parallel computation of operands stored in processor registers. The SIMD registers
are 128 bit. That means, when working with floating point numbers, four coefficients
in single precision or two coefficients in double precision floating point can be stored
in the register as one packed data word. If the vertical SSE instruction is called
with two operands (coefficients in packed data words) stored in SIMD registers, then
two or four instruction are executed simultaneously from stored coefficients point of
view. Let us consider the 2-D cubic spline interpolation again. Spline coefficients
are stored in the memory. There are 16 coefficients per spline interval determined
by indexes 𝑖, 𝑗. The first iteration of the cubic spline computes following four 1-D
spline interpolations

𝑎 = ((𝑐1, 𝑖,𝑗𝑦p + 𝑐2, 𝑖,𝑗)𝑦p + 𝑐3, 𝑖,𝑗)𝑦p + 𝑐4, 𝑖,𝑗,

𝑏 = ((𝑐5, 𝑖,𝑗𝑦p + 𝑐6, 𝑖,𝑗)𝑦p + 𝑐7, 𝑖,𝑗)𝑦p + 𝑐8, 𝑖,𝑗,

𝑐 = ((𝑐9, 𝑖,𝑗𝑦p + 𝑐10,𝑖,𝑗)𝑦p + 𝑐11,𝑖,𝑗)𝑦p + 𝑐12,𝑖,𝑗,

𝑑 = ((𝑐13,𝑖,𝑗𝑦p + 𝑐14,𝑖,𝑗)𝑦p + 𝑐15,𝑖,𝑗)𝑦p + 𝑐16,𝑖,𝑗.

The mathematical operation which are aligned vertically can be computed simultane-
ously using three add operations and two multiply operations. This however requires
proper alignment of coefficients in the memory. The alignment of coefficients for one
spline interval is following:[︁

𝑐1 𝑐5 𝑐9 𝑐13 𝑐2 𝑐6 𝑐10 𝑐14 𝑐3 𝑐7 𝑐11 𝑐15 𝑐4 𝑐8 𝑐14 𝑐16

]︁
As a result, the whole 2-D cubic spline interpolation consists of two 1-D interpolations
instead of original five. This implementation is possible also for higher dimension, only
the coefficients must be properly aligned in memory. The 3-D interpolation consists
of six 1-D interpolations instead of original 21, which means that theoretically almost
4 times lower computational cost can be achieved but the real implementation can
contain little bit higher computational overhead connected with moving of operands
into SIMD registers.

A similar parallelization can also be made with other types of interpolations.
Each algorithm however can require different memory organization. But generally,
coefficients are stored according to the following scheme (3-D interpolation):[︁

. . . 𝑐𝑖,𝑗,𝑘 𝑐𝑖+1,𝑗,𝑘 . . . 𝑐𝑖+𝑁1,𝑗,𝑘 𝑐𝑖,𝑗+1,𝑘 . . . 𝑐𝑖+𝑁1,𝑗+𝑁2,𝑘 . . . 𝑐𝑖,𝑗,𝑘+1 . . .
]︁

It means that the coefficients along the first dimension are neighbouring although
the interpolation scheme is opposite – from the last dimension to the first one.

105

4.5 Customized approximation of transfer func-
tion

The approximation of the transfer function is not restricted to use only one ap-
proximation technique but one can use also a combination of different algorithms.
For instance, the shape of the transfer function can be dependent on additional
parameters like the power supply voltage value. If this dependency is linear (the
saturation voltage equal to the power supply voltage value), the resulting transfer
function can be computed as a linear combination of two transfer functions defined
for boundary values of the power supply voltage while the relation between the
input and the output is given e.g. be the cubic spline interpolation. Then, for
given two inputs - the input signal value and e.g. the fluctuating power supply
voltage (the power sagging effect known from guitar tube power amplifiers [18]), two
spline interpolations and one linear interpolation are computed. It is also possible to
compute the linear interpolations between cubic spline coefficients and then compute
one cubic spline interpolation.

This approach can also be used for approximation of the parametric circuits
transfer function. While there is requirement to have a continuous approximation
with regards to input variables, it is sufficient to use the the linear interpolation
between approximated transfer functions for different circuit parameter values. This
enables reduction of the amount of the interpolation data. The linear interpolations
between the transfer function coefficients do not have to be computed during the
evaluation of function value but they can be computed only when the parameter is
changed, which allows further reduction of the computational cost.

4.5.1 Reshaping of transfer function

Parametric circuits often have the transfer function with very similar shape for
different circuit parameter settings and the transfer function often seems to be scaled
at the first sight. But not just only parametric circuits. Figure 4.10 shows the
transfer function of the triode tube preamp from Figure 4.1. One can see that the
transfer function is only scaled and shifted with the capacitor state voltage 𝑣𝑐1.

To describe the shifted and scaled transfer function, the reshaping function is
introduced in form

𝑓2(𝑥) = 𝑚1 + 𝑚2𝑓1 (𝑚3 + 𝑚4𝑥) (4.18)

where 𝑓1(𝑥) is the stored transfer function, 𝑥 is the independent input variable and
𝑚1, 𝑚2, 𝑚3 and 𝑚4 are scaling coefficients which allow the reshaping of the stored
transfer function 𝑓1(𝑥) and which are dependent on additional inputs – 𝑣𝑐1 in case of
the transfer function from Figure 4.10. The reshaping coefficients can be found by

106

−40 −30 −20 −10 0 10 20 30 40
0

50

100

150

200

250

300

350

Input voltage [V]

O
ut

pu
t v

ol
ta

ge
 [V

]

V

c1
 = 0 V

V
c1

 = 3 V

V
c1

 = 6 V

V
c1

 = 9 V

V
c1

 = 12 V

V
c1

 = 15 V

Figure 4.10: The transfer function of the tube preamp

finding of the least square error between the rescaled function 𝑓2(𝑥) from the stored
function 𝑓1(𝑥) and the target function 𝑓2(𝑥) using the error function

𝑓err =
(︃

𝑁−1∑︁
𝑖=0

𝑓2(𝑥𝑖)− 𝑓2(𝑥𝑖)
)︃2

=
(︃

𝑁−1∑︁
𝑖=0

𝑓2(𝑥𝑖)− (𝑚1 + 𝑚2𝑓1 (𝑚3 + 𝑚4𝑥𝑖))
)︃2

.

(4.19)

Now the task is to find coefficients 𝑚1, 𝑚2, 𝑚3 and 𝑚4 in such way that they will
minimize the error function (4.19). We can suppose that there is only one optimal
solution of min(𝑓err) and this solution lies at the stationary point of (4.19). The
stationary point is found by solving

0 = ∇𝑓err(𝑚1, 𝑚2, 𝑚3, 𝑚4) (4.20)

where the partial derivatives are

𝜕𝑓err

𝜕𝑚1
= 2

𝑁−1∑︁
𝑖=0

(−𝑓2(𝑥𝑖) + 𝑚1 + 𝑚2𝑓1(𝑚3 + 𝑚4𝑥𝑖)) , (4.21)

𝜕𝑓err

𝜕𝑚2
= −2

𝑁−1∑︁
𝑖=0

((𝑓2(𝑥𝑖)−𝑚1 −𝑚2𝑓1(𝑚3 + 𝑚4𝑥𝑖))𝑓1(𝑚3 + 𝑚4𝑥𝑖)), (4.22)

𝜕𝑓err

𝜕𝑚3
= −2

𝑁−1∑︁
𝑖=0

((𝑓2(𝑥𝑖)−𝑚1 −𝑚2𝑓1(𝑚3 + 𝑚4𝑥𝑖))𝑚2𝑓
′
1(𝑚3 + 𝑚4𝑥𝑖)), (4.23)

𝜕𝑓err

𝜕𝑚4
= −2

𝑁−1∑︁
𝑖=0

(((𝑓2(𝑥𝑖)−𝑚1 −𝑚2𝑓1(𝑚3 + 𝑚4𝑥𝑖)))𝑚2𝑓
′
1(𝑚3 + 𝑚4𝑥𝑖)𝑥𝑖). (4.24)

107

Because the function 𝑓1(𝑥) is given by the look-up table, the interpolation of
function values and numerical derivatives must be used to solve (4.20). The system
of equations (4.20) is solved numerically using the Newton-Raphson method with
residual functions given by (4.21, 4.22, 4.23, 4.24). If the shape of both functions
𝑓1(𝑥) and 𝑓2(𝑥) is similar, the good starting point for the Newton-Raphson method
is m0 = {0, 1, 0, 1}. After obtaining coefficients 𝑚1, 𝑚2, 𝑚3 and 𝑚4, the output
function value can be evaluated from computational scheme:

1. 𝑥2 = 𝑚3 + 𝑚4𝑥

2. 𝑖 = index(𝑥2)
3. 𝑦 = (((𝑎𝑖𝑥2 + 𝑏𝑖)𝑥2 + 𝑐𝑖)𝑥2 + 𝑑𝑖)𝑚4 + 𝑚3

if the cubic spline interpolation is used for the approximation of the transfer function
𝑓1(𝑥).

Coefficients 𝑚1, 𝑚2, 𝑚3 and 𝑚4 are not constant but they depend on parameter
values – 𝑣𝑐1 in case of the transfer function from Figure 4.10. Therefore, the equation
(4.20) is solved for different values of 𝑣𝑐1 voltage and as a result, the dependency of
coefficients 𝑚1, 𝑚2, 𝑚3, 𝑚4 on 𝑣𝑐1 voltage is shown in Figure 4.11 and the reshaped
transfer function for 𝑣𝑐1 = 15𝑉 from the transfer function for 𝑣𝑐1 = 0𝑉 is displayed
in Figure 4.12. One can observe almost linear dependency of coefficients 𝑚1, 𝑚2, 𝑚3,
𝑚4 on 𝑣𝑐1 voltage which can be expressed using equations

𝑚1 = 1.0075𝑣𝑐1 − 0.0066
𝑚2 = −0.0029𝑣𝑐1 + 1.0000
𝑚3 = −1.1111𝑣𝑐1 + 0.1124
𝑚4 = 0.0028𝑣𝑐1 + 0.9998.

(4.25)

If the low value coefficients from (4.25) are omitted, the whole approximation of the
tube preamp transfer function can be expressed as

𝑓2(𝑥) = 1.0075𝑣𝑐1 + 𝑓1 (−1.1111𝑣𝑐1 + 𝑥) . (4.26)

This reshaping technique allowed reduction of one interpolation dimension. Instead
of originally required 2-D spline interpolation, 1-D interpolation can be used still
with low error of the transfer function as it can be seen from Figure (4.12).

108

0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

V
c
 voltage [V]

m
 c

oe
ffi

ci
en

ts

m
1

m
2

m
3

m
4

Figure 4.11: Reshaping coefficients dependency on cathode capacitor voltage

−40 −30 −20 −10 0 10 20 30 40
0

100

200

300

400

Input voltage [V]

O
ut

pu
t v

ol
ta

ge
 [V

]

−40 −30 −20 −10 0 10 20 30 40
−0.4

−0.2

0

0.2

0.4

Input voltage [V]

E
rr

or
 [V

]

Figure 4.12: Reshaped transfer function of the tube preamp.

109

4.6 Summary

This chapter was focused on the use of approximations for the nonlinear function
evaluation. The precomputation of the nonlinear circuit for several input variables is
always the first step of the approximation of nonlinear circuit functions. Two types of
approximations were examined. The first one is based on the direct precomputation
and latter approximation of nonlinear ODEs. The whole circuit is in this case
considered as the system with several inputs built by real inputs and states of energy-
storing components. The advantage of this approach is that the approximating
functions can be designed in such way that the real-time simulation algorithm is
independent on the sampling frequency value and the computational cost is very
low. The disadvantage of this approach is the fact that the dimension of the
approximating function depends on the number of energy-storing components and
real circuit inputs, which can be high even for quite simple audio circuits. This
approach is therefore suitable for real-time simulation of circuits with two or three
energy-storing components, which is e.g. the often simulated triode amplifier.

The second approach exploits the DK-method analysis of the given circuit. The
approximating function dimension depends on the number of nonlinear current
models in the circuit. If this number is higher that the number of energy-storing
components, then this approach is inefficient. However, the analysis of DK-method
inputs enabling reduction of the dimension was introduced.

The comparison of several approximation techniques in real-time conditions was
the main focus and the biggest contribution of this chapter. The concrete use of the
approximation algorithm however depends on the architecture of the DSP system on
which the algorithm will be implemented. The spline interpolation and the linear
interpolation are very efficient algorithms but the cubic spline interpolations require
additional data (spline coefficients) to be stored. If memory demands are critical, local
types of approximations (the linear or the cubic Hermite piece-wise interpolation)
should be used. But especially the second one has quite high computational cost.

Memory demands can be reduced by use of non-uniform grid interpolation with
constant access to data, which can, without any serious increasing of computational
cost, significantly reduced the amount of data stored in the memory.

Generally, it can be stated that approximations up to four dimensions can be
used for real-time simulations, but this number of course depends on the given DSP
system. The use of approximations is not limited only for the evaluation of nonlinear
circuit functions. It can also be used for simulation of linear parametric systems, e.g.
the simulation of the guitar loudspeaker cabinet measured using microphone placed
in a grid of measuring points in front of the loudspeaker [7].

110

5 COMPLEX SYSTEM SIMULATION

Circuits of analog audio effects are not usually as simple as in examples given in
previous chapters. The typical guitar preamp or the power amplifier can consist up
to ten nonlinear equations, which is not feasible to compute in real-time numerically
and the approximation of the 𝑁 -dimensional nonlinearity would require huge data
sets of coefficients. The reasonable number of approximation dimensions is 4 as it
was shown in the previous chapter and this number is not sufficient for the simulation
of more complex systems.

Therefore, this chapter will deal with techniques which can be used for real-time
simulations of more complex systems. They will differ in computational costs as well
as in the accuracy of the simulation and thus they are suitable for implementation
into different DSP systems. The base of all these techniques is a decomposition of
the complex system into separate and simple blocks which are solved separately and
then they are connected according to the signal flow of the simulated system. This
technique has been commonly used in various papers [32, 22, 15]. The big advantage
is the low computational cost and the decomposition into the blocks can be easily
done for some systems as well. Some problems occur when there is a tight coupling
between neighbouring parts of the circuit and one part strongly affects the other one
and vice-versa. In these cases, this simple decomposition produces high error into
the overall simulation.

Therefore, the main aim of discussed techniques is to preserve mutual interactions
between separate blocks. These techniques should allow such decomposition that will
provide the same results as without the decomposition or at least such decomposition
which would be inaudible in the output signal.

This chapter will address three methods of the decomposition including case
studies on different audio effects circuits.

5.1 Modified Block-Wise Method

This method was designed as the efficient and simple method enabling the simulation
of the mutual interaction between adjoined blocks. The research of this method
has been published in author’s publications [8, 9, 10, 11]. Audio effect circuits are
often built by a cascade of amplifiers, filters, nonlinear waveshapers, etc. There is
therefore often coupling only between directly adjojned blocks and there is no direct
coupling between e.g. the first and third block. We can suppose that there is a very
small impact of the third block behavior to the first block. Hence, the simulation
of the first block has to take account of the current, typically nonlinear, flowing
into the second block and one has to simulate both first two blocks together. As

111

a result of this, the output impedance of the first block is matched with the input
resistance of the adjoined second block and the output voltage or the output signal
of the first block is correct. Up to this point, only the simulation of the first block
was considered although the second block has been used and there is also available
the output signal of the second block. However, this output signal is not matched
with the third block and therefore, it cannot be used. The simulation of the second
block requires the simulation of the second block together with the third one. The
output signal between the first and second block is then used as the input signal for
the connected second and third block. If there are more blocks connected in series,
we can continue with the decomposition in similar way. The whole process of such
decomposition is illustrated in Figure 5.1.

Block 1 Block 2

Block 2 Block 3

Block 3 Block 4

Figure 5.1: Example of decomposition into separate blocks using the modified block-
wise method.

This approach is especially suitable for guitar preamp simulations. The guitar
preamps usually contain up to five tube amplifier stages connected in series [87].
The circuit schematic of one typical tube amplifier stage with one triode is shown
in Figure 5.2 with typical values in Table 5.1. Individual tube amplifier stages are
characterized with the nonlinear input resistance which is able to affect the previous
tube amplifier stage. The nonlinear input resistance of the typical tube amplifier
stage is shown in Figure 5.3. The input resistance is foremost given by resistors
𝑅in, 𝑅g and the grid current 𝐼g of the tube. There is no grid current for negative
grid-to-cathode voltages and there is only the current flowing through the series
combination of resistors 𝑅in, 𝑅g and hence, the input resistance is equal to the sum
of resistances 𝑅in and 𝑅g. When the grid-to-cathode voltage becomes positive, the
grid current 𝐼g starts to flow into the tube and the tube input resistance starts to
decrease very rapidly. When the tube input resistance gets lower with the increasing
grid-to-cathode voltage, the parallel combination of the grid resistor 𝑅g and the input
tube resistance gets lower as well and the overall input resistance is built mainly
only by the resistance 𝑅in.

112

𝐶out

𝑅in

𝑅k𝑅g

𝑅p

𝐶k

𝑣in

𝑣ps

𝑣out

Figure 5.2: Circuit schematic for typical tube amplifier stage.

Table 5.1: Values for circuit components for typical tube amplifier stage.

Rin Rg Rk Rp Cout Ck Vps

470 kΩ 1 MΩ 1.8 kΩ 100 kΩ 22 nF 1 µF 350 V

Consequently, when this nonlinear resistance is connected to the plate circuit of
the previous tube, it builds the nonlinear load for the previous tube. The effect of
the nonlinear load to the tube amplifier stage can be examined e.g. by the simulation
of this stage for different load resistor values, which is shown in Figure 5.4 where the
load resistor has value of 0.5 MΩ, 1.0 MΩ and 4.0 MΩ. One can see the compression
of the transfer function for smaller load resistance values and therefore, one can
expect the compression of the positive half-wave of the tube amplifier stage output
signal as it can be seen in Figure 5.5.

This figure shows the comparison of output signals for the tube amplifier stage
with the constant load and the tube amplifier stage with the connected another tube
stage which serves as the nonlinear load. The input signal was a sine wave with a
frequency of 1 kHz and an amplitude of 10 V. As it was expected, the compression of
the output signal occurred because of the grid current of the adjacent tube flowing
through the plate resistor of the first tube. There is also the bias shift caused by
charging and discharging of the decoupling capacitor connected between both tube
stages by the grid current. This affects the operating point of the adjacent tube
stage. These results show that the simple decomposition into separate tube stages
with the constant load is inaccurate and thus the modified decomposition have to be
used.

113

−40 −30 −20 −10 0 10 20 30 40
0

5

10

15
x 10

5

Input voltage [V]

In
pu

t r
es

is
ta

nc
e

[Ω
]

−40 −30 −20 −10 0 10 20 30 40
−5

0

5

10
x 10

−5

Input voltage [V]

In
pu

t c
ur

re
nt

 [A
]

Figure 5.3: Input volt-amper characteristics (top) and resistance (bottom) of tube
amplifier stage.

−40 −30 −20 −10 0 10 20 30 40
−250

−200

−150

−100

−50

0

50

100

Input voltage [V]

O
ut

pu
t v

ol
ta

ge
 [V

]

R

L
 = 4 MΩ

R
L
 = 1 MΩ

R
L
 = 0.5 MΩ

Figure 5.4: Transfer function of the tube amplifier stage with different load resistor.

114

0 0.5 1 1.5 2 2.5
−300

−250

−200

−150

−100

−50

0

50

100

Time [ms]

O
ut

pu
t v

ol
ta

ge
 [V

]

triode couple
single triode

Figure 5.5: Transient analysis of the tube amplifier stages with the nonlinear load
and the constant load.

The decomposition using the modified block-wise method supposes that there is
no or very small interaction between the first and the third block and therefore, it
is sufficient to consider only the second block terminated with the constant load as
the nonlinear load for the first block. Because it is only a hypothesis, it should be
proved by some simulations. Firstly, we need to know the impact of the second tube
stage variable load on the output signal of the first tube stage. Two input stages
given by the circuit schematic in Figure 5.2 were connected in series and the load
resistor was connected to the output of the second stage. After obtaining the circuit
equations, the simulation for the load resistor 𝑅L = 5 kΩ, 𝑅L = 50 kΩ, 𝑅L = 500 kΩ
and 𝑅L = 5 MΩ was performed. Results are shown in Figure 5.6. The input signal
was a sine wave with a frequency of 1 kHz and an amplitude of 10 V. The upper graph
shows output signals of the first tube stage for different load resistor of the second
stage and the lower graph shows the difference between them. The output signal
obtained from the simulation with 𝑅L = 5 MΩ was chosen as the reference signal.
As it can be seen from the graphs, there is an interaction between the second tube
stage variable load and the first tube stage output signal. This interaction however
manifests for rather small values of the load of the second tube stage, which is not
the case of the connected third block with minimal input resistance given by the
resistor 𝑅in, as it can be seen from Figure 5.3. This value is usually high (hundreds

115

of kΩ and in this case 470 kΩ) and therefore, the nonlinear input resistance of the
third tube stage has the minor impact to the output signal of the first tube stage.
This was also proved in Figure 5.7 which shows the comparison of the plate output
signals of the tube stage with one or two tube stages connected in series as the load
of the first stage. The input signal was again the sine wave with the frequency of
1 kHz and the amplitude of 10 V. The upper graph shows output signals of the first
tube stage and the lower part their difference. This simulation proved that this type
of decomposition into blocks is very convenient for use with simulation of the guitar
preamp.

0 0.5 1 1.5 2 2.5
−250

−200

−150

−100

−50

0

50

Time [ms]

O
ut

pu
t v

ol
ta

ge
 [V

]

R

L
 = 5 kΩ

R
L
 = 50 kΩ

R
L
 = 500 kΩ

R
L
 = 5 MΩ

0 0.5 1 1.5 2 2.5
−4

−3

−2

−1

0

1

Time [ms]

V
ol

ta
ge

 d
iff

er
en

ce
 [V

]

R

L
 = 5 kΩ

R
L
 = 50 kΩ

R
L
 = 500 kΩ

Figure 5.6: Comparison of the output signals for different load resistor in the tube
stage connected as the nonlinear load.

116

0 5 10 15 20
100

200

300

400

Time [ms]

P
la

te
 v

ol
ta

ge
 [V

]

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

Time [ms]

E
rr

or
 [V

]

2 Triodes
3 Triodes

Figure 5.7: Comparison of the output signals of the first tube stage with one and
two tube stages connected in series as the nonlinear load.

5.2 Guitar Tube Amplifier Simulation as a Case
Study for Modified Block-wise Method

The previous chapter dealt with the general usage of the modified block-wise method
for the simulation of the guitar preamp. The example of the whole guitar preamp
simulation will be given in this chapter. The guitar preamp consisting of four tube
amplifier stages was chosen as a case study. The circuit schematic of this preamp is
shown in Figure 5.8 and values of circuit components are given by Table 5.2. This
preamp is not a real preamp available on the market but it has the same topology
and further, real preamps have slightly different values of components and they can
contain capacitors connected between the cathode and ground in different tube stages
not only in the first as in the schematic in Figure 5.8 [87]. Real preamps further
contain the potentiometer for the regulation of the preamp gain. This potentiometer
can by modeled by the resistors 𝑅2 and 𝑅g2 where the grid node of the second
triode is connected to the tap of the potentiometer. Real preamps also contain the
parametric passive filter, which is commonly called the tone stack. This circuit is
mostly connected to the output of the preamp and therefore it is omitted in this
simulation because it is the linear circuit.

117

𝐶1

𝑅1

𝑅k1𝑅g1

𝑅p1

𝐶k1

𝑣in

𝑣ps

𝐶2

𝑅2

𝑅k2𝑅g2

𝑅p2

𝑣ps

𝐶3

𝑅3

𝑅k3𝑅g3

𝑅p3

𝑣ps

𝑅4

𝑅k4𝑅g4

𝑅p4

𝑣ps

𝑅L

𝑣out

1 2 3

Figure 5.8: Circuit schematic for the guitar preamp with four tube stages and its
decomposition into three blocks.

Table 5.2: Values for circuit components for the guitar preamp.

Component Value

R1 68 kΩ

Rg1, Rg2, Rg3, Rg4 1 MΩ

Rp1, Rp2, Rp3, Rp4 100 kΩ

Rk1 2.7 kΩ

Rk2, Rk3, Rk4 1.8 kΩ

R2, R3, R4 470 kΩ

RL 4 MΩ

C1, C2, C3 22 nF

Ck1 1 µF

Vps 400 V

118

Figure 5.8 also shows the decomposition into three separate blocks which is done
in correspondence with the block diagram in Figure 5.1. Output and input signal
nodes of the blocks are marked with green and blue circles. Green color marks the
output node of the first block and the input of the second block and similarly blue
color marks the output node of the second block and input node of the third block.
Two types of blocks can be found after the decomposition and circuit schematics of
both blocks are shown in Figures 5.9 and 5.10. Both types of blocks can be described
in terms of the classic nodal analysis or the DK-method. Because the circuits are
simple and contain at most two capacitors, the approximation of the direct ODEs
is chosen, which will provide very efficient simulation algorithm. However, when
the realistic behavior is desired rather than the minimal computational cost, the
parasitic effect of the Miller capacitance and the power supply voltage fluctuation
should be considered and in that case, the approximation of the DK-method would
be more efficient.

The application of the nodal analysis to the first block (Figure 5.9) leads to the
circuit equations

0 = (𝑣in − 𝑣g1)𝐺1 − 𝑣g1𝐺g1 − 𝑖g1

0 = 𝑣c1m − 𝑣c1 −
𝑣k𝐺k − 𝑖p1 − 𝑖g1

𝐶1𝑓s

0 = (𝑣ss − 𝑣p1)𝐺p1 − (𝑣2 − 𝑣g2)𝐺2 − 𝑖p1

0 = 𝑣c2m − 𝑣c2 −
(𝑣2 − 𝑣g2)𝐺2

𝐶2𝑓s

0 = (𝑣2 − 𝑣g2)𝐺2 − 𝑣g2𝐺g2 − 𝑖g2

0 = 𝑣k2𝐺k2 − 𝑖g2 − 𝑖p2

0 = (𝑣ss − 𝑣p2)𝐺p2 − 𝑣p2𝐺L − 𝑖p2

(5.1)

where the capacitor currents were discretized using the BE discretization. The
symbols 𝐺 again denote conductances, 𝑓s is the sampling frequency and functions
𝑖g1, 𝑖p1, 𝑖g2 and 𝑖p2 are nonlinear triode models discussed in the chapter 1.4.4. The
second and the third block (see Figure 5.10) can be described by the equations

0 = (𝑣in − 𝑣g1)𝐺1 − 𝑣g1𝐺g1 − 𝑖g1

0 = 𝑣k𝐺k − 𝑖g − 𝑖p

0 = (𝑣ss − 𝑣p1)𝐺p1 − (𝑣2 − 𝑣g2)𝐺2 − 𝑖p1

0 = 𝑣c2m − 𝑣c2 −
(𝑣2 − 𝑣g2)𝐺2

𝐶2𝑓s

0 = (𝑣2 − 𝑣g2)𝐺2 − 𝑣g2𝐺g2 − 𝑖g2

0 = 𝑣k2𝐺k2 − 𝑖g2 − 𝑖p2

0 = (𝑣ss − 𝑣p2)𝐺p2 − 𝑣p2𝐺L − 𝑖p2.

(5.2)

119

𝐶1

𝑅1

𝑅k1𝑅g1

𝑅p1

𝐶k1

𝑣in

𝑣ps

𝑅2

𝑅k2𝑅g2

𝑅p2

𝑣ps

𝑅L

𝑣out

Figure 5.9: Circuit schematic of the block 1 of the decomposed tube preamp.

𝐶1

𝑅1

𝑅k1𝑅g1

𝑅p1

𝑣in

𝑣ps

𝑅2

𝑅k2𝑅g2

𝑅p2

𝑣ps

𝑅L

𝑣out

Figure 5.10: Circuit schematic of the block 1 and 2 of the decomposed tube preamp.

Both circuit equations (5.1) and (5.2) were numerically solved with the Koren’s
model of the triode 12AX7 with the generic model parameters given according to
[70] for different input voltages and capacitor voltages. Approximating functions,
the output function 𝑓out, the capacitor 𝐶1 update function 𝑓𝑐1 and the capacitor
𝐶2 update function 𝑓𝑐2 defined in the chapter 4.1.1, for both blocks are plotted in
Figures 5.11 and 5.12. Functions required by the first block are shown for the input
voltage signal between -20 and 50 V and for capacitor voltages 𝑣C1 = 0 V, 5 V and
𝑣C2 = 100 V, 200 V, 300 V. Functions of the second block are plotted for the same
input voltage and capacitor voltages 𝑣C1 = 0 V, 100 V, 200 V, 300 V, 400 V.

120

−20 −10 0 10 20 30 40 50
−300

−200

−100

0

100

Input voltage V
in

 [V]
O

ut
pu

t f
un

ct
io

nf
ou

t [V
]

−20 −10 0 10 20 30 40 50
−5000

0

5000

Input voltage V
in

 [V]

U
pd

at
e

fu
nc

tio
n

f c1
 [V

s−
1]

−20 −10 0 10 20 30 40 50
−1

0

1

2
x 10

5

Input voltage V
in

 [V]

U
pd

at
e

fu
nc

tio
n

f c2
 [V

s−
1]

V
c1,2

: 0 V, 300 V

V
c1,2

: 5 V, 300 V

V
c1,2

: 0 V, 200 V

V
c1,2

: 5 V, 200 V

V
c1,2

: 0 V, 100 V

V
c1,2

: 5 V, 100 V

Figure 5.11: Approximating functions for the simulation of the system (5.1)

The individual functions have very similar shapes with different capacitor voltages.
Therefore, the combination of the spline and the linear interpolation discussed in the
chapter 4.5 can be used. Splines are used for the interpolation of the function for
the different input voltage and constant capacitor voltages – the computed spline
coefficients are stored in the look-up table in the row 𝑟 which was computed as
the linear function of the input and capacitor voltage indexes. The final function
values are computed using the linear interpolation between function values for
given capacitor values computed from spline coefficients stored in the look-up table.
The step of input variables (the input voltage and capacitor voltages) was found
experimentally. The maximal chosen deviation between the numerical solution and
the approximation was 0.1 V. The input capacitor voltage 𝑣C1 has only two values
because the technique of reshaping of the transfer function can be used. The step of
the capacitor voltage 𝑣C2 was 5 V between 0 V and the power supply voltage 400 V.
Other capacitor voltages are interpolated. The input voltage grid was ±200 V with
the step of 1 V. Details about the look-up table of the first block are in Table 5.3.
The size of the look-up table is given by the number of the rows 𝑟 of the table which

121

−20 −10 0 10 20 30 40 50
−400

−200

0

200

400

Input voltage V
in

 [V]

O
ut

pu
t f

un
ct

io
n

f ou
t [V

]

−10 0 10 20 30 40 50
−5

0

5

10
x 10

4

Input voltage V
in

 [V]

U
pd

at
e

fu
nc

tio
n

f c1
 [V

s−
1]

V
c1

: 0V

V
c1

: 100V

V
c1

: 200V

V
c1

: 300V

V
c1

: 400V

Figure 5.12: Approximating functions for the simulation of the system (5.1).

can be obtained from
𝑛r = 𝑣insteps𝑣c1steps𝑣c2steps (5.3)

and in case of the first block, it is 64000 rows. The size is 2 MB per table, if
double precision floating point numbers are used. The total size of all tables (the
output value function, the capacitor 𝐶1 update function and the capacitor 𝐶2 update
function) is 6MB. The input voltage grid for the second and third block was ±200V
with the step of 1V and the capacitor voltage 𝑣𝑐1 grid was between 0 V and the
power supply voltage with the step of 5V (see Table 5.4). The total size of both
tables (the output value function, the capacitor 𝐶1 update function) is 2MB for one
block. The total size of all tables required for the simulation of the whole preamp is
10 MB.

Table 5.3: Look-up table for simulation of the first block.

Variable Min. Max. Step

𝑣in[𝑉] −200 200 1

𝑣c1[𝑉] 0 5 5

𝑣c2[𝑉] 0 400 5

122

Table 5.4: Look-up table for simulation of the second and third block.

Variable Min. Max. Step

𝑣in[𝑉] −200 200 1

𝑣c1[𝑉] 0 400 5

The final equation for the simulation of the first block are

𝑣out[𝑛] = 𝑓out(𝑣in[𝑛], 𝑣c1[𝑛], 𝑣c2[𝑛])
𝑣c1[𝑛 + 1] = 𝑣c1[𝑛] + 𝑇𝑓c1(𝑣in[𝑛], 𝑣c1[𝑛], 𝑣c2[𝑛])
𝑣c2[𝑛 + 1] = 𝑣c2[𝑛] + 𝑇𝑓c2(𝑣in[𝑛], 𝑣c1[𝑛], 𝑣c2[𝑛]).

(5.4)

where 𝑛 denotes the time index, 𝑣out[𝑛] is the output signal value of the first block
and 𝑣c1[𝑛 + 1], 𝑣c2[𝑛 + 1] are capacitor voltages for the next sampling period. The
equations of the second and third block are

𝑣out[𝑛] = 𝑓out(𝑣in[𝑛], 𝑣c1[𝑛])
𝑣c1[𝑛 + 1] = 𝑣c1[𝑛] + 𝑇𝑓c1(𝑣in[𝑛], 𝑣c1[𝑛]).

(5.5)

The final simulation equations (5.4),(5.5) are quite simple. This is the biggest
advantage when comparing to other methods for the real time simulation, e.g. the
DK-method, which requires matrix operations and the dimension of look-up tables
would also have to be higher.

5.2.1 Computational Complexity

Because this thesis is focused on the real-time simulation of nonlinear audio effects,
the computational complexity of designed algorithms plays very important role. First
of all, the computational complexity of the numerical solution of the set of nonlinear
functions f(x𝑖[𝑛]) describing the simulated system will be investigated. Generally, it
is solved using the Newton-Raphson method

x𝑖+1[𝑛] = x𝑖[𝑛]− J−1(x𝑖[𝑛])f(x𝑖[𝑛]) (5.6)

where x𝑖[𝑛] is the vector of unknown variables, J(x𝑖[𝑛]) is the Jacobian matrix and
f(x𝑖[𝑛]) is the function vector, 𝑖 denotes the iteration index and 𝑛 is the time index.
Each iteration of the Newton-Raphson method requires the computation of the
nonlinear function vector f(x𝑖[𝑛]) and the Jacobian J(x𝑖[𝑛]). The computational
cost of the vector f(x𝑖[𝑛]) depends on the particular simulated system and for now it
can be expressed as 𝑐f .

123

The Jacobian matrix J(x𝑖[𝑛]) contains partial first order derivatives of the function
f(x𝑖[𝑛]). Since the function f(x𝑖[𝑛]) does not have to be a continuous function,
derivatives are generally computed using for instance the finite difference formula

𝑓 ′(𝑥) = 1
ℎ

(𝑓(𝑥 + ℎ)− 𝑓(𝑥)) (5.7)

with the step ℎ which consists of two function calls f(x𝑖[𝑛]) and two add operations
and one multiply operation. The total cost of the Jacobian matrix computation is
𝑁 + 1 function calls resulting in (𝑐f + 3)𝑁 operations where 𝑁 is the number of
unknown variables. When the Jacobian matrix is established, it’s inversion matrix is
computed. The computational complexity depends on the chosen algorithm of the
matrix inversion. Generally, it is a 𝑂(𝑁3) problem. However, the LU decomposition
offers more efficient implementation. Then, the equation (5.6) is rewritten as

LU = J(x𝑖[𝑛]) (5.8)
Ly = f(x𝑖[𝑛]) (5.9)
UΔx𝑖[𝑛] = y (5.10)

x𝑖+1[𝑛] = x𝑖[𝑛]−Δx𝑖[𝑛]. (5.11)

According to [91], the cost of the equation (5.8) (Crout’s algorithm) is 1
3𝑁3 of inner

loops containing one multiply and add operation, the cost of equations (5.9) and
(5.10) is 𝑁2 multiply and add operations. Thus, the total cost is 𝑐LU = 2

3𝑁3 + 4𝑁2

operations. Knowing Δx𝑖[𝑛], the equation (5.11) can be solved, which requires 𝑁

add operations. The total cost of the Newton method is then

𝑐nm = 𝑖
(︂

(𝑐f + 3)𝑁 + 𝑐f + 2
3𝑁3 + 4𝑁2 + 𝑁

)︂
(5.12)

where 𝑖 is the number of iterations of the Newton method and 𝑁 is the number
of circuit nodes or unknown variables. However, it must be said that this number
is theoretical. Neither the algorithm branches nor memory movements have been
considered.

To compare the computational cost of the preamp simulation using the block
division and without the division, the function cost 𝑐f have to be determined as well
as the number of unknown variables. The cost 𝑐f can be obtained from (5.1) and
(5.2) for both types of blocks and the function f(x𝑖[𝑛]) required for the whole preamp
is given in [11]. All functions suppose the implementation of nonlinear tube models
using look-up tables with the linear interpolation. As a result, the cost 𝑐g of the grid
current function is one add operation and two multiply operations, the cost 𝑐p of the
plate current function is three add operations and six multiply operations. The cost
𝑐f of the whole preamp is 𝑐f = 78 + 4𝑐p + 4𝑐g operations and 𝑁 = 15.

124

The function f(x[𝑛]) of the first block involves 15 multiply operations and 22
add operations and four nonlinear function calls resulting in 𝑐f = 37 + 2𝑐p + 2𝑐g

operations. The equation is solved using the Newton method as well. Therefore, the
equation (5.12) can be used for the determination of the computational complexity.
For given 𝑁 = 7, the total cost is

𝑐nm = 𝑖 (749 + 16 (𝑐g + 𝑐p)) . (5.13)

The function f(x[𝑛]) of the second block has 𝑐f = 34 + 2𝑐p + 2𝑐g operations and
the cost is then

𝑐nm = 𝑖 (728 + 16 (𝑐g + 𝑐p)) . (5.14)

If the blocks are connected together, the total cost of the solution of these blocks
is

𝑐nm = 𝑖1 (749 + 16 (𝑐g + 𝑐p)) +
+ (𝑖2 + 𝑖3) (728 + 16 (𝑐g + 𝑐p))

(5.15)

where 𝑖1, 𝑖2 and 𝑖3 are numbers of iterations of the first, second and third block
respectively.

Table 5.5 shows the number of operations required for the simulations based on
the Newton method. Since the Newton method is the iterative process, the number
of operations was investigated for one iteration, for the average number of iterations
and the maximal number of iterations per sample as well. However, the average and
the maximal number of iterations depend on the type of the input signal. Therefore,
the algorithms were tested with an E-chord guitar riff with the maximal amplitude
around 200 mV. The whole circuit simulation required 2.79 iterations on average and
100 iterations at the most. In case of the simulation using the block decomposition,
average numbers of iterations were 𝑖1 = 2.1294, 𝑖2 = 2.4149, 𝑖3 = 2.6806 and maximal
numbers of iterations were 𝑖1 = 4, 𝑖2 = 5, 𝑖3 = 100 for each block respectively. The
number of iterations of individual blocks differs because each block processes different
signals. The maximal number of iterations was 100 and the error limit of the Newton
method was 1× 10−5. The number of iterations was computed from the whole signal
(5 s, 240× 103 samples).

The computational complexity of algorithms based on different types of approx-
imations discussed in the chapter 4 is shown in Table 5.6. There are available
results for the whole preamp simulation as well as for the block-wise simulation.
The numbers were computed from equations (5.4) and (5.5) where different types of
approximation of the appropriate order 𝑁 from the section 4 were used. Similarly,
the whole system can be approximated by the order of approximation 𝑁 = 5, because
the whole circuit contains 4 capacitors.

125

Table 5.5: Computational complexity comparison of the simulations based on the
Newton method – the number of operations.

Simulation One Maximal Average
type Iteration Iteration Iteration
Whole 5.48× 103 5.48× 105 1.53× 104

By blocks 2.97× 103 1.39× 104 6.89× 103

Table 5.6: Computational complexity comparison of the simulations based on ap-
proximations – the number of operations.

Simulation Linear Cubic Spline
type Interp. Interp. Interp.
Whole 9.38× 102 5.28× 104 9.53× 102

By blocks 2.06× 102 2.58× 103 2.51× 102

As the results available in Tables 5.5 and 5.6 have shown, algorithms based on
approximations offer the constant computational complexity, which is also much
lower than at the algorithms based on the Newton method.

The algorithm with the spline interpolation and the block-wise method was
implemented in C++ language as the Virtual Studio Technology (VST) plug-in effect
to test it in real-time. It was tested with a 2.66 GHz i7 Intel Mac with 4 GB RAM
at the sampling frequency of 48 kHz using the external audio interface M-Audio Fast
Track Pro with the Audio Stream Input/Output (ASIO) buffer size 128 samples. If
no oversampling was used, the CPU load was around 3 %.

5.2.2 Simulation Results

The proposed algorithm was then tested with different input signals including sine
wave signals at different frequencies and amplitudes (including frequencies close to
the Nyquist frequency), a logarithmic sweep signal (see Figure 5.13) and also the
real guitar signal. All the performed simulations were stable even if no oversampling
was used and the amplitude of the testing signal was around hundreds of volts at the
input of the third block. The comparison between the simulation of the whole preamp
using the Newton method and the simulation based on the division into blocks is
plotted in Figure 5.14. Time difference signals are normalized to the maximal value
of the output signal.

126

t [s]

f [
H

z]

0 0.5 1 1.5 2 2.5 3

100

1000

10000
20000

t [s]

f [
H

z]

0 0.5 1 1.5 2 2.5 3

100

1000

10000
20000

t [s]

f [
H

z]

0 0.5 1 1.5 2 2.5 3

100

1000

10000
20000

t [s]

f [
H

z]

0 0.5 1 1.5 2 2.5 3

100

1000

10000
20000

Figure 5.13: Simulation results for a logarithmic sweep signal. The plate voltage
signals of all tubes are displayed.

127

0 500 1000 1500
0

0.005

0.01

Time [ms]

V
p1

 e
rr

or

[%
]

0 500 1000 1500
0

0.05

0.1

Time [ms]

V
p2

 e
rr

or

[%
]

0 500 1000 1500
0

0.05

0.1

Time [ms]

V
p3

 e
rr

or

[%
]

0 500 1000 1500
0

0.5

1

Time [ms]

V
p4

 e
rr

or

[%
]

0 500 1000 1500
0

0.01

0.02

V
p1

 e
rr

or

[V
]

0 500 1000 1500
0

0.2

0.4

V
p2

 e
rr

or

[V
]

0 500 1000 1500
0

0.2

0.4

V
p3

 e
rr

or

[V
]

0 500 1000 1500
0

1

2

V
p4

 e
rr

or

[V
]

Figure 5.14: Comparison between simulation results using the numerical solution
and using approximations for a part of the real guitar riff. Only the error signals are
displayed.

Error values, such as the maximal and the average error, are also expressed in
Table 5.7. The maximal error is around 2 V. The amplification of the preamp is
approximately 1.84× 104 and therefore it is probable that this error can be masked
by the amplified noise of the connected guitar and by the noise of the preamp. In
places with the maximal error, the Newton method reached the maximal number of
iterations (100), and therefore the error is caused partly by the approximation and
partly by the Newton method.

128

Table 5.7: Errors for the simulation from Figure 5.14. The plate voltage signal errors
are displayed.

− 𝑣p1 𝑣p2 𝑣p3 𝑣p4

Max[V] 6.27× 10−4 2.38× 10−1 2.12× 10−1 1.99
Mean[V] 1.13× 10−5 5.70× 10−3 1.01× 10−2 6.20× 10−3

Var[V] 1.05× 10−7 2.54× 10−4 1.07× 10−3 0.13× 10−3

5.3 Decomposition of the DK-method nonlinear
core

The block decomposition discussed in the previous section provides very efficient
simulation of circuits where the number of circuit inputs represented by real inputs
and energy-storing components is lower than the number of nonlinear equations. Oth-
erwise, the DK-method is more appropriate and it can be of course used together with
the modified block-wise method. The advantage of this approach is the simulation
of the circuit with more energy-storing components. This approach will be studied
on the simulation of the guitar preamp with topology typical for Fender preamps
[87]. This chapter was published mainly in [12]. The circuit schematic of the studied
preamp is in Figure 5.15 with component values in Table 5.8 [95]. It consists of two
triodes 12AX7 and the tone stack connected between them. Components 𝑅6, 𝑅7, 𝑅8

and 𝑅9 are potentiometers of variable circuit parameters treble 𝜃, middle 𝜇, bass 𝛽

and volume 𝜆 with the following mapping to resistors: 𝑅6b = 𝑅6𝜃, 𝑅6a = 𝑅6 (1− 𝜃),
𝑅7𝛽, 𝑅8𝜇 𝑅9b = 𝑅9𝜆 and 𝑅9a = 𝑅9 (1− 𝜆).

Table 5.8: Component values of the Fender type guitar preamp

Component Value Component Value Component Value

𝑅1 32 kΩ 𝑅2 1 MΩ 𝑅3 1.5 kΩ
𝑅4 100 kΩ 𝑅5, 𝑅11 100 kΩ 𝑅6 250 kΩ
𝑅7 250 kΩ 𝑅8 10 kΩ 𝑅9 1 MΩ
𝑅10 1.64 kΩ 𝐶1, 𝐶5 22 µF 𝐶2 250 pF
𝐶3 100 nF 𝐶4 22 nF 𝑉ps 385 V

DK-method matrices can be computed from incidence matrices which are given
in the appendix C. These matrices differ from the original matrices used in [12]
because the efficient recomputation of DK-method matrices, as was discussed in
the chapter 1.3.2 and used for this preamp simulation in [12], is not considered

129

𝑅1

𝑅3𝑅2

𝑅4

𝐶1

𝑣in

𝑣ps

𝑅5 𝑅6a

𝑅6b

𝑅7

𝑅8

𝐶2

𝐶3

𝐶4

𝑅9a

𝑅10𝑅9b

𝑅11

𝐶5

𝑣ps

𝑣out

Figure 5.15: Circuit schematic of the Fender type guitar preamp.

because the main focus of this chapter is on the efficient computation of the nonlinear
core of the DK-method. Using equations (1.62) – (1.70) the following matrices are
derived: A ∈ R5×5, B ∈ R5×2, C ∈ R5×4, D ∈ R1×5, E ∈ R1×2, F ∈ R1×4, G ∈ R4×5,
H ∈ R4×2, K ∈ R4×4 and the nonlinear function to be solved is

0 =

⎛⎜⎜⎜⎜⎜⎝
𝑝1

𝑝2

𝑝3

𝑝4

⎞⎟⎟⎟⎟⎟⎠+ K

⎛⎜⎜⎜⎜⎜⎝
𝑖g(𝑣gk1, 𝑣pk1)
𝑖p(𝑣gk1, 𝑣pk1)
𝑖g(𝑣gk2, 𝑣pk2)
𝑖p(𝑣gk2, 𝑣pk2)

⎞⎟⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎜⎜⎝

𝑣gk1

𝑣pk1

𝑣gk2

𝑣pk2

⎞⎟⎟⎟⎟⎟⎠ . (5.16)

5.3.1 Precomputation

As it can be seen from (5.16) and from the dimension of the matrix K, the nonlinear
equation has 4 independent inputs for which it has to be precomputed. First of all,
it is necessary to find ranges for input variables 𝑝1, 𝑝2, 𝑝3 and 𝑝4. This can be done
using p[𝑛] = Gx[𝑛] + Hu[𝑛] and it will depend on input signal values and circuit
state values as well. The range of input values can be easily derived from input
signal properties and also from the power supply value 𝑉PS, obtaining the range
of state variables is much more complicated. Values of state variables will belong
to the interval [0, 𝑉PS] but mostly, the range will be much narrower. However, the
ranges can also be estimated from performed simulations without the approximation.
Ranges of input variables 𝑝1, 𝑝2, 𝑝3 and 𝑝4 used for this simulation are in Table 5.9.

Because the circuit contains variable circuit components, the coefficients of the
K matrix are not constant. Ranges for K matrix coefficients can be obtained from
(1.70) for variable conductances dependend on parameter values 𝜃, 𝛽, 𝜇, and 𝜆. In

130

this case, the derivation of parameter ranges is much easier, the range is [0, 1] for all
parameters and the range of K matrix coefficients is given by the minimal and the
maximal value for all combinations of discretized parameter values. The ranges of K
coefficients are in Table 5.10.

Table 5.9: Ranges of p parameters.

𝑝1 𝑝2 𝑝3 𝑝4

min −4 200 −400 200
max 4 400 400 400
step 0.125 4 0.25 0.25

Table 5.10: Ranges of K coefficients.

𝑘22 𝑘23 𝑘33

min 3.3× 104 0.0 0.4
max 4.6× 104 3.8× 104 1.3× 105

As the result of the precomputation, there are four 4D look-up tables for circuit
currents or voltages for constant parameters or 7D look-up tables for the parametric
circuit. The 𝑝1, 𝑝2, 𝑝3 and 𝑝4 parts of look-up tables should be interpolated with a
smooth interpolation, while the linear interpolation is sufficient for the parametric
part. The process of the precomputation itself is rather computationally demanding.
Because the multivariate nonlinear equation tends to oscillate, one must use very
small step between neighboring data points to force the solution to converge and
it costs a lot of time and memory. After the precomputation, it is needed 53 GB
of memory for coefficients per table. Although the number of data points can be
reduced by using the nonuniform approximation, algorithms for the nonuniform
reduction of data discussed in the chapter 4 needs lot of time to process all the data
and therefore the straightforward approximation is not very convenient.

5.3.2 Further Look-up Table Size Reduction

Look-up tables designed in the previous chapter are sufficient for working in real-time.
Nevertheless, they are quite impractical for the implementation of the algorithm
which would simulate the circuit because the amount of data is still large. Therefore,
a further compression of data would be beneficial. By closer look at the K matrix,
one can observe some zero or low-value coefficients compared to other values.

131

As a result of this, the correlation analysis of precomputed data was performed.
Covariance matrices for input variables and function values were in the form (ex-
pressed only for one row of input data)

𝐶 = cov
(︁[︁

𝑝𝑖1
1 𝑝𝑖2

2 𝑝𝑖3
3 𝑝𝑖4

4 𝑓(𝑝𝑖1
1 , 𝑝𝑖2

2 , 𝑝𝑖3
3 , 𝑝𝑖4

4)
]︁)︁

(5.17)

where the superscripts denote indexes 𝑖1 ∈ [1, 𝑁1], 𝑖2 ∈ [1, 𝑁2], 𝑖3 ∈ [1, 𝑁3] and
𝑖4 ∈ [1, 𝑁4] for the number of values 𝑁1, 𝑁2, 𝑁3 and 𝑁4 computed from ranges in
Table 5.9 and function 𝑓(𝑝1, 𝑝2, 𝑝3, 𝑝4) was substituted with precomputed nonlinear
current functions 𝑖g1(p), 𝑖p1(p), 𝑖g2(p) and 𝑖p2(p). The resulting covariance between
nonlinear functions and inputs 𝑝1, 𝑝2, 𝑝3 and 𝑝4 is stated in Table 5.11.

Table 5.11: Covariance between precomputed functions and inputs.

𝑖g1(p) 𝑖p1(p) 𝑖g2(p) 𝑖p2(p)

𝑝1 −5.23 · 10−4 −6.98 · 10−3 5.55 · 10−4 8.61 · 10−4

𝑝2 1.12 · 10−6 −1.02 · 10−1 6.65 · 10−3 1.17 · 10−2

𝑝3 −1.17 · 10−8 1.11 · 10−3 −1.40 · 10−2 −2.47 · 10−2

𝑝4 5.49 · 10−14 5.02 · 10−9 5.40 · 10−8 −8.81 · 10−3

As it can be seen from the table, some nonlinear functions are almost independent
on some input variables – functions 𝑖g1(p), 𝑖p1(p), 𝑖g2(p) are independent on the
variable 𝑝4 and the function 𝑖g1(p) is further almost independent on the variable
𝑝3. Therefore, the look-up table 𝑖g1(p) can have only 2 dimensions for constant
parameters and 5 dimensions for the parametric circuit, the look-up tables 𝑖p1(p),
𝑖g2(p) are 3D for constant and 6D for the parametric circuit and the look-up table
𝑖p2(p) remains the same.

The second important point is that due to missing connections between nonlinear
functions, the further simplification and decomposition can be done. The nonlinear
equation (5.16) can be split in this case into

𝑣gk1 = 𝑘11𝑖g(𝑣gk1) + 𝑘12𝑖p(𝑣gk1, 𝑣pk1) + 𝑝1

𝑣pk1 = 𝑘21𝑖g(𝑣gk1) + 𝑘22𝑖p(𝑣gk1, 𝑣pk1) + 𝑘23𝑖g(𝑣gk2) + 𝑝2⏟ ⏞
𝑝2

(5.18)

and

𝑣gk2 = 𝑝3 + 𝑘32𝑖p(𝑣gk1, 𝑣pk1)⏟ ⏞
𝑝3

+ 𝑘33𝑖g(𝑣gk2) + 𝑘34𝑖p(𝑣gk2, 𝑣pk2)

𝑣pk2 = 𝑘43𝑖g(𝑣gk2) + 𝑘44𝑖p(𝑣gk2, 𝑣pk2) + 𝑝4

(5.19)

132

where terms 𝑘23𝑖g(𝑣gk2) and 𝑘32𝑖p(𝑣gk1, 𝑣pk1) are mutual impacts of adjacent triodes.
Equations (5.18) and (5.19) can be computed separately for input variables 𝑝1, 𝑝2

and 𝑝3, 𝑝4 and further functions

𝑓ip1(𝑝1, 𝑝2) = 𝑖p(𝑣gk1(𝑝1, 𝑝2), 𝑣pk1(𝑝1, 𝑝2)) (5.20)
𝑓ig2(𝑝3, 𝑝4) = 𝑖g(𝑣gk1(𝑝3, 𝑝4), 𝑣pk1(𝑝3, 𝑝4)) (5.21)

can be introduced. Subsequently, the plate current 𝑖p1 can be computed from

𝑖p1 = 𝑓ip1(𝑝1, 𝑝2 + 𝑓ig2(𝑝3 + 𝑖p1, 𝑝4)) (5.22)

for 𝑝1, 𝑝2, 𝑝3 and 𝑝4 then
𝑖g2 = 𝑓ig2(𝑝3 + 𝑖p1, 𝑝4) (5.23)

and finally, all remaining currents or voltages can be derived from (5.18) and (5.19).
Considering this decomposition together with the reduction of look-up tables

based on the correlation analysis, the whole model is split into two independent
parts, each containing one tube. Grid and plate currents are computed from the
approximated functions

𝑖g1 = 𝑖g1app(𝑝1, 𝑝2) (5.24)
𝑖p1 = 𝑖p1app(𝑝1, 𝑝2, 𝑝3) (5.25)

where the redundant inputs were neglected. Then, the mutual interaction of both
tubes is known and it has been already included in the plate current 𝑖p1. This current
is subsequently used as the additional contribution to the input 𝑝3 as it can be seen
in (5.19) and currents of the second tube are obtained from

𝑖g2 = 𝑖g2app(𝑝3 + 𝑘32𝑖p1) (5.26)
𝑖p2 = 𝑖g2app(𝑝3 + 𝑘32𝑖p1, 𝑝4). (5.27)

The big advantage of this decomposition is that it should not introduce any error
(results can differ but it is rather caused by the numerical solving) if no 𝑝 parameter
is omitted. The last task is to consider the efficient approximation regarding variable
K matrix coefficients – 𝑘22, 𝑘23 = 𝑘32 and 𝑘33. The grid current 𝑖g1 is independent
on the second tube, therefore it should only depend on the coefficient 𝑘22, but in
this case the current 𝑖g1 does not change with the value of 𝑘22. The plate current 𝑖p1

depends on all variable 𝑘 coefficients and currents of the second tube depend only
on the coefficient 𝑘33 because other coefficients have already been included in the
contribution of the plate current to the variable 𝑝3. Eventually, it was found that
using parameters 𝜃, 𝛽, 𝜇, and 𝜆 as inputs into the look-up table for the current 𝑖p1

gives the smaller look-up table size than using coefficients 𝑘22, 𝑘23, 𝑘33 although the

133

number of variable K coefficients is smaller than the number of parameters. This is
because the function 𝑖p1 changes dramatically with different 𝑘22, 𝑘23, 𝑘33 values and
thus coefficients 𝑘22, 𝑘23, 𝑘33 must be more densely sampled, while with parameters
𝜃, 𝛽, 𝜇, 𝜆 as the inputs into the look-up table, it seems to be sufficient to use only
boundary values. Furthermore, the current 𝑖p1 is almost independent on the bass
parameter 𝛽 – this is due to the parallel combination of resistors 𝑅18 and 𝑅22 with
the serial combination 𝑅20𝛽 and 𝑅19.

The final equations are

𝑖g1 = 𝑖g1app(𝑝1, 𝑝2) (5.28)
𝑖p1 = 𝑖p1app(𝑝1, 𝑝2, 𝑝3, 𝜃, 𝜇, 𝜆) (5.29)
𝑖g2 = 𝑖g2app(𝑝3 + 𝑘32𝑖p1, 𝑘33) (5.30)
𝑖p2 = 𝑖g2app(𝑝3 + 𝑘32𝑖p1, 𝑝4, 𝑘33) (5.31)

and the detailed description of look-up tables is provided in Table 5.12 where the
number of intervals per dimension per table is given. It consists of spline interpolations
for p parameters and linear interpolations for circuit parameter changes. During
the processing of the input signal, it is not necessary to compute all interpolations,
the parametric part can be interpolated only when parameters are changed and
resulting interpolated spline coefficients are stored in the runtime memory of the
algorithm. Then only the interpolation based on p variables is performed for each
signal sample. The size of the runtime memory is shown in the third column of
Table 5.12. The memory size required for the look-up tables is mentioned it Table
5.13. Comparing to the original data size 53 GB per table (based on Table 5.9 and
boundary values for 𝜃, 𝛽, 𝜇, and 𝜆), the great reduction of data has been achieved.
However, it is not sufficient for some applications, e.g. implementations on signal
processors. In this case, it is possible to perform the interpolation directly from data
points stored in look-up tables instead of spline coefficients. Then, the look-up table
size is reduced (see the columns ”local interpolation” in Table 5.13) but on the other
hand, the runtime computation of whole splines will significantly increase the overall
computational complexity. In such case, it is better to use a local interpolation
working on base of the nonuniform grid only from neighboring data points. However,
these interpolations will be slower than the proposed spline interpolation (see chapter
4 for the comparison of different approximations).

134

Table 5.12: Description of the look-up tables – number of intervals

table spline linear interpolation runtime

𝑖g1app 13× 6 - 13× 6
𝑖p1app 46× 14× 29 2× 2× 2 46× 14× 29
𝑖g2app 15× 6× 13 - 15× 6
𝑖p2app 38× 8× 12 - 38× 8

Table 5.13: Data size of the look-up tables.

table
global interpolation [kB] local interpolation [kB]

total runtime total runtime

𝑖g1app 3.75 3.75 0.30 0.30
𝑖p1app 65520.00 4095.00 1167.26 72.95
𝑖g2app 210.00 4.38 4.57 0.35
𝑖p2app 712.25 16.20 14.25 1.19

5.3.3 Simulation Results

The algorithm for the simulation of the preamp was written as the Matlab mex
function in C language. The algorithm consists of nonuniform spline interpolations
up to third order for the 𝑝 variable interpolation and linear interpolations for the
parameter variable interpolation. The parameter interpolation is performed before
the main processing loop. The Template Numerical Toolkit1 was used for matrix
operations. The computational complexity of the algorithm was around 10 % on the
2.66 GHz Intel processor but more than half of it was spent on matrix operations.
The original state-space model without approximations consumes around 76 %. The
algorithm was not optimizied using the parallel processing because it would require to
write critical parts of the algorithm in assembly language or using intrinsic functions.
As the result of this, the further reduction of the computational complexity is possible.
The quality of the approximation is illustrated in Figures 5.16, 5.17, 5.18, and 5.19.
The input signal was a 100 Hz sine wave signal with an amplitude of 0.5 V and the
sampling frequency value of 48 kHz. Figures 5.16 and 5.17 show output signals in
the time and frequency domain for the numerical solution and the approximated
solution for parameter values 𝜃 = 1, 𝛽 = 1, 𝜇 = 1, 𝜆 = 1; that means without
the interpolation of parameters. The interpolation for parameter values 𝜃 = 0.5,
𝛽 = 0.5, 𝜇 = 0.5, 𝜆 = 0.5, which is the worst case, is shown in Figures 5.18 and

1http://math.nist.gov/tnt/

135

5.19. Although the difference of the numerical and approximated solution is quite
large in the time domain, the harmonic content is very similar. The sine wave signal
mentioned earlier and the real guitar riff were used as input signals. There was only
a very subtle difference for the sine wave signal and the version with parameters
𝜃 = 0.5, 𝛽 = 0.5, 𝜇 = 0.5, 𝜆 = 0.5.

The most difficult part of the approximation is choosing the maximal approxima-
tion error which is used for the nonuniform data reduction. In this case, the chosen
error for the data reduction was 1× 10−6 A. Because the triode current functions
were approximated, the output signal error is equal to the chosen error multiplied by
the plate resistor value multiplied with the amplification factor of the next triode.
The next error source are the constant 𝑝 parameters. This error can be however only
evaluated by comparing of output signals with non-constant 𝑝 parameters.

0 5 10 15 20 25
100

200

300

400

Time [ms]

V
ol

ta
ge

 v
p2

 [V
]

0 5 10 15 20 25
−10

−5

0

5

Time [ms]

E
rr

or
 v

ol
ta

ge
 [V

]

Figure 5.16: Output signals (top, dashed line for the numerical solution) and the
difference between numerical and approximated solution in the time domain without
the parameter interpolation.

136

0 1000 2000 3000 4000 5000
−30

−20

−10

0

10

20

30

40

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

Figure 5.17: Difference betweenthe numerical and approximated solution in the
time frequency without the parameter interpolation. The numerical solution (dashed
line) is shifted to the right.

0 5 10 15 20 25
100

200

300

400

Time [ms]

V
ol

ta
ge

 v
p2

 [V
]

0 5 10 15 20 25
−2

0

2

Time [ms]

E
rr

or
 v

ol
ta

ge
 [V

]

Figure 5.18: Output signals (top, dashed line for the numerical solution) and the
difference between the numerical and approximated solution in the time domain with
the parameter interpolation.

137

0 1000 2000 3000 4000 5000
−30

−20

−10

0

10

20

30

40

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

Figure 5.19: Difference between the numerical and approximated solution in the
time frequency with the parameter interpolation. The numerical solution (dashed
line) is shifted to the right.

5.4 DK-model Decomposition Using Connection
Components

The decomposition described in the previous section allows the efficient decomposition
of feed-forward circuits with triodes or transistors without any feedbacks. This is
due to the form of the K matrix, which is tri-diagonal, and the model of the triodes
or transistors which are built by two nonlinear current functions controlled by two
control voltages. Nevertheless, previous models of preamps did not take the Miller
effect into account which in case of circuits with tubes can manifest in the audible
area [65]. This effect is caused by the parasitic capacitance between the grid and the
plate node of the tube and this effect can be simulated by connecting the parasitic
capacitor into the model of the amplifier. This capacitance causes the local feedback
of each tube amplifier stage between the plate and the grid circuit and as a result, the
K matrix does not have the tri-diagonal form anymore. This will be shown for the
model of the Marshall JCM 800 preamp [87]. The circuit schematic of a part of this
preamp (from the input of the preamp to the input of the cathode follower circuit
which is connected to the node 𝑣out) is displayed in Figure 5.20 and component values
in Table 5.14. Parasitic capacitors are marked with red color. The circuit contains
one potentiometer for the ”Gain” parameter which is modeled by resistors 𝑅6a and
𝑅6b.

138

𝑅2

𝑅3𝑅1

𝑅4

𝐶1

𝐶m1

𝐶2

𝑣in

𝑣ps

𝐶3 𝑅5

𝐶4

𝐶5 𝐶m2

𝑅6a

𝑅7𝑅6b

𝑅8

𝑣ps

𝐶6 𝑅9

𝐶7

𝑅11𝑅10

𝑅12

𝑣ps2

𝐶m3 𝑣out

1 2 3

4

5

6 7

8 9

10

11

12 13

14

15

16

Figure 5.20: Circuit schematic of the Marshall JCM 800 guitar preamp.

Table 5.14: Component values of the Marshall JCM 800 guitar preamp

Component Value Component Value Component Value

𝑅1, 𝑅6 1 MΩ 𝑅2 68 kΩ 𝑅3 2.7 kΩ
𝑅4, 𝑅8, 𝑅12 100 kΩ 𝑅5, 𝑅9, 𝑅10 470 kΩ 𝑅7 10 kΩ
𝑅11 820 Ω 𝐶1 680 nF 𝐶2 100 pF
𝐶3, 𝐶6 22 nF 𝐶4, 𝐶7 470 pF 𝐶5 1 nF
𝐶m1, 𝐶m2, 𝐶m3 2 pF 𝑉ps 385 V 𝑉ps2 385 V

DK-method matrices A ∈ R10×10, B ∈ R10×4, C ∈ R10×6, D ∈ R1×10, E ∈ R1×4,
F ∈ R1×6, G ∈ R6×10, H ∈ R6×4, K ∈ R6×6 can be computed using (1.62) – (1.70)
from the incidence matrices Nr, Nx, Nn, Nu, No and conductance matrices Gr and
Gx which are given in the appendix D. Matrices without considering the parasitic
capacitances can be computed from incidence matrices where the last three rows of
the matrix Nx are excluded as well as the last three members in the definition of
the diagonal matrix Gx or if capacitance values of the parasitic capacitors are set to
zero. Both approaches give different matrices A, C and G but the matrix K is the
same, which is important for the analysis of the nonlinearity. The K matrix without

139

considering the parasitic capacitances is

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.80× 104 8.13 −6.94 0 0 0
8.13 4.86× 104 4.75× 104 0 0 0
−6.94 4.75× 104 7.85× 104 1.00× 104 0 0

0 0 1.00𝑒× 104 9.31× 104 7.94× 104 0
0 0 0 7.94× 104 9.75× 104 8.20× 102

0 0 0 0 8.20× 102 1.01× 105

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and with the parasitic capacitances

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.69× 104 7.71× 102 7.35× 102 1.41× 101 1.34× 101 3.15× 10−1

7.71× 102 4.75× 104 4.62× 104 8.88× 102 8.45× 102 1.98× 101

7.35× 102 4.62× 104 7.69× 104 1.13× 104 1.22× 103 2.87× 101

1.41× 101 8.88× 102 1.13× 104 9.01× 104 7.62× 104 1.79× 103

1.34× 101 8.45× 102 1.22× 103 7.62× 104 9.39× 104 3.00× 103

3.15× 10−1 1.98× 101 2.87× 101 1.79× 103 3.00× 103 9.85× 104

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It can be seen that in the first case, the K matrix has almost the tri-diagonal form
(the values 𝑘13 = 𝑘31 = −6.94 are caused by the capacitor 𝐶2) and hence it can
be decomposed in the same way as was described in the previous section. But if
the parasitic capacitances are considered, all matrix coefficients are non-zero and
therefore the decomposition into blocks cannot be done without loosing the accuracy
(coefficients with small values have to be replaced by zeros).

Nevertheless, the circuit still has the feed-forward topology where there can be
identified some blocks which are connected in one node with the current flowing
between them and thus the decomposition into blocks should be still possible. This
decomposition of the circuit schematic from Figure 5.20 is illustrated in Figure 5.21.

It consists of three blocks – tube amplifier stages, each containing one triode. The
mutual interaction between the blocks is caused by connection currents 𝑖conn1 and
𝑖conn2 which are marked in Figure 5.21 with red color. If we consider the simulation
of each tube amplifier stage separately, then these connection currents are actually
additional current inputs of given tube amplifier stages. The nonlinear functions of
the blocks can be written as

0 = G1x1 + H1
(︁

𝑣in 𝑣ps 𝑖conn1

)︁T
+ K1i1 (v1)− v1 (5.32)

0 = G2x2 + H2
(︁

𝑣ps 𝑖conn1 𝑖conn2

)︁T
+ K2i2 (v2)− v2 (5.33)

0 = G3x3 + H3
(︁

𝑣ps2 𝑖conn2

)︁T
+ K3i3 (v3)− v3 (5.34)

for unknown variables v and matrices G, H and K which can be derived for each
block. Then, if the blocks are connected together, the connection currents 𝑖conn1

140

𝑅2

𝑅3𝑅1

𝑅4

𝐶1

𝐶m1

𝐶2

𝑣in

𝑣ps

𝐶3 𝑅5

𝐶4

6
𝐼conn1

𝐶5 𝐶m2

𝑅6a

𝑅7𝑅6b

𝑅8

𝑣ps

𝐶6 𝑅9

𝐶7

13
𝑖conn2

𝑅11𝑅10

𝑅12

𝑣ps2

𝐶m3 𝑣out

1 2 3

4

5

7 8

9 10

11

12

14 15

16

17

18

Figure 5.21: Circuit schematic of the Marshall JCM 800 guitar preamp with the
decomposition into blocks.

and 𝑖conn2 are unknown but they cannot be found directly because there are three
equations (5.32), (5.33), (5.34), each for one block, and only two unknown variables.
Further conditions come from the fact that voltages of nodes 𝑉4, 𝑉6 resp. 𝑉11, 𝑉13

(see Figure 5.21), in which the blocks are connected, have to be equal. Therefore,
we need to exploit the output equation of the DK-method. The voltage on the
connection node of the first block can be expressed as

𝑣4 = D11x1 + E11
(︁

𝑣in 𝑣ps 𝑖conn1

)︁T
+ F11i1 (v1) . (5.35)

The second block has two connection nodes given by

𝑣6 = D21x2 + E21
(︁

𝑣ps 𝑖conn1 𝑖conn2

)︁T
+ F21i2 (v2) , (5.36)

𝑣11 = D22x2 + E22
(︁

𝑣ps 𝑖conn1 𝑖conn2

)︁T
+ F22i2 (v2) (5.37)

and the connection node of the third block is

𝑣13 = D31x3 + E31
(︁

𝑣ps2 𝑖conn2

)︁T
+ F31i3 (v3) . (5.38)

Using the equality 𝑣4 = 𝑣6 and 𝑣11 = 𝑣13, one can obtain the final equations

0 = D11x1 + E11
(︁

𝑣in 𝑣ps 𝑖conn1

)︁T
+ F11i1 (v1)−D21x2−

− E21
(︁

𝑣ps 𝑖conn1 𝑖conn2

)︁T
− F21i2 (v2) ,

(5.39)

0 = D22x2 + E22
(︁

𝑣ps 𝑖conn1 𝑖conn2

)︁T
+ F22i2 (v2)−D31x3−

− E31
(︁

𝑣ps2 𝑖conn2

)︁T
− F31i3 (v3)

(5.40)

141

from which the connection currents 𝑖conn1 and 𝑖conn2 can be numerically computed.
Each iteration however requires the numerical solution of (5.32), (5.33) and (5.34),
which does not seem as an advantage so far. But on the other hand, the equation
(5.32) can be rewritten into

0 = G1x1 + H1
(︁

𝑣in 𝑣ps 𝑖conn1

)︁T
+ K1i1 (v1)− v1 =

= G1x1 +
⎡⎣ ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

⎤⎦ [︁ 𝑣in 𝑣ps 𝑖conn1

]︁T
+ K1i1 (v1)− v1 =

= G1x1 +
⎡⎣ ℎ11 ℎ12

ℎ21 ℎ22

⎤⎦ [︁ 𝑣in 𝑣ps

]︁T
+
⎡⎣ ℎ13

ℎ23

⎤⎦ 𝑖conn1 + K1i1 (v1)− v1 =

= p1 +
⎡⎣ ℎ13

ℎ23

⎤⎦ 𝑖conn1 + K1i1 (v1)− v1 =

= p1 + K1i1 (v1)− v1

(5.41)

where the vector p1 contains two elements and therefore the equation (5.41) can
be easily approximated as two-dimensional function i1app (p1) where p1 = p1 +⎡⎣ ℎ13

ℎ23

⎤⎦ 𝑖conn1. The equations (5.33) and (5.34) can be approximated in the similar

way, both requiring the 2D approximation. These approximating functions can be
substituted into (5.39) and (5.40) to get equations

0 = D11x1 + E11
(︁

𝑣in 𝑣ps 𝑖conn1

)︁T
+ F11i1app

⎛⎝p1 +
⎡⎣ ℎ13

ℎ23

⎤⎦ 𝑖conn1

⎞⎠−
−D21x2 − E21

(︁
𝑣ps 𝑖conn1 𝑖conn2

)︁T
−

− F21i2app

⎛⎝p2 +
⎡⎣ ℎ12 ℎ13

ℎ22 ℎ23

⎤⎦⎡⎣ 𝑖conn1

𝑖conn2

⎤⎦⎞⎠ ,

(5.42)

0 = D22x2 + E22
(︁

𝑣ps 𝑖conn1 𝑖conn2

)︁T
+

+ F22i2app

⎛⎝p2 +
⎡⎣ ℎ12 ℎ13

ℎ22 ℎ23

⎤⎦⎡⎣ 𝑖conn1

𝑖conn2

⎤⎦⎞⎠−D31x3−

− E31
(︁

𝑣ps2 𝑖conn2

)︁T
− F31i3app

⎛⎝p3 +
⎡⎣ ℎ13

ℎ23

⎤⎦ 𝑖conn2

⎞⎠ .

(5.43)

The equations now only requires the numerical solving in real-time for two unknowns
– 𝑖conn1, 𝑖conn2 instead of the numerical solving of original six unknown variables, which
is a big improvement.

142

As it can be seen, the determination of nonlinear functions which are able
to connect separate blocks is quite complicated and thus obtaining of connection
functions in more straightforward way would be a great benefit. We will start with
the analysis of the whole schematic instead of the analysis of separate blocks and
further, we can define a nonlinear connection component with the connection current
flowing through but zero voltage across the component terminals. The incorporation
of this connection component however requires renumbering of the original circuit
nodes (compare circuit schematics in Figure 5.20 and 5.21). The analysis of the whole
circuit can be then done in the same way using incidence matrices as the analysis of
the separate parts or any other circuit without these connection components. The
only change is in the matrix Nn which defines positions of nonlinear components and
in which the connection components have to be added – each connection component
as one new row in the matrix with 1 and −1 for the nodes where the component is
connected and 0 for the other nodes. The final incidence matrices are given in the
appendix E and DK-method matrices can be computed in standard way. As a result,
the K matrix can be obtained in the form 2

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘11 𝑘12 0 0 0 0 𝑘17 0
𝑘21 𝑘22 0 0 0 0 𝑘27 0
0 0 𝑘33 𝑘34 0 0 𝑘37 𝑘38

0 0 𝑘43 𝑘44 0 0 𝑘47 𝑘48

0 0 0 0 𝑘55 𝑘56 0 𝑘58

0 0 0 0 𝑘65 𝑘66 0 𝑘68

𝑘71 𝑘72 𝑘73 𝑘74 0 0 𝑘77 𝑘78

0 0 𝑘83 𝑘84 𝑘85 𝑘86 𝑘87 𝑘88

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

One can see that tube amplifier stages are clearly separated. The first block is
represented by the grid and plate current weighed by coefficients 𝑘11, 𝑘12, 𝑘21, 𝑘22 and
the interaction with the second block is via the current 𝑖conn1 and coefficients 𝑘17, 𝑘27.
The second block consists of coefficients 𝑘33, 𝑘34, 𝑘43, 𝑘44 and weighed connection
currents 𝑖conn1, 𝑖conn2 by coefficients 𝑘37, 𝑘38, 𝑘47, 𝑘48 and the third block consists of
coefficients 𝑘55, 𝑘56, 𝑘65, 𝑘66 and weighed connection current 𝑖conn2 by coefficients 𝑘58,
𝑘68. The 7-th and 8-th row of the matrix represent connection functions.

Until now, connection components were considered as standard circuit components
but as it was stated above, the voltage across the component must be zero. Therefore,
the standard DK-method nonlinearity given e.g. by the equation (3.104) have to be
transformed into

0 = p + Ki− vZn (5.44)
2the K matrix with real values is in the appendix E.

143

where
Zn = diag

(︁[︁
1 1 1 1 1 1 0 0

]︁)︁
(5.45)

where zeros are at positions of rows with connection components in the Nn matrix
and vectors v and i are given according to

v =
[︁

𝑣gk1 𝑣pk1 𝑣gk2 𝑣pk2 𝑣gk3 𝑣pk3 𝑖conn1 𝑖conn2

]︁T
,

i =
[︁

𝑖g (𝑣1, 𝑣2) 𝑖p (𝑣1, 𝑣2) 𝑖g (𝑣3, 𝑣4) 𝑖p (𝑣3, 𝑣4) 𝑖g (𝑣5, 𝑣6) 𝑖p (𝑣5, 𝑣6) 𝑣7 𝑣8

]︁T
.

The equation (5.44) can be solved directly but this does not make much sense
because the nonlinearity is more complicated than the original (there are now two
extra unknown variables). However, the nonlinearity can be easily decomposed into

0 =
⎡⎣ 𝑝1

𝑝2

⎤⎦+
⎡⎣ 𝑘11 𝑘12

𝑘21 𝑘22

⎤⎦⎡⎣ 𝑖g (𝑣1, 𝑣2)
𝑖p (𝑣1, 𝑣2)

⎤⎦−
⎡⎣ 𝑣1

𝑣2

⎤⎦ , (5.46)

0 =
⎡⎣ 𝑝3

𝑝4

⎤⎦+
⎡⎣ 𝑘33 𝑘34

𝑘43 𝑘44

⎤⎦⎡⎣ 𝑖g (𝑣3, 𝑣4)
𝑖p (𝑣3, 𝑣4)

⎤⎦−
⎡⎣ 𝑣3

𝑣4

⎤⎦ , (5.47)

0 =
⎡⎣ 𝑝5

𝑝6

⎤⎦+
⎡⎣ 𝑘55 𝑘56

𝑘65 𝑘66

⎤⎦⎡⎣ 𝑖g (𝑣5, 𝑣6)
𝑖p (𝑣5, 𝑣6)

⎤⎦−
⎡⎣ 𝑣1

𝑣2

⎤⎦ (5.48)

for arbitrary inputs 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6 and nonlinear triode currents 𝑖g1, 𝑖p1, 𝑖g2, 𝑖p2,
𝑖g3 and 𝑖p3 can be approximated for these inputs. Finally, the nonlinear connection
function is given by
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘71 0
𝑘72 0
𝑘73 𝑘83

𝑘74 𝑘84

0 𝑘85

0 𝑘86

𝑘77 𝑘87

𝑘78 𝑘88

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑖g1 (𝑝1 + 𝑘17𝑖conn1, 𝑝2 + 𝑘27𝑖conn1)
𝑖p1 (𝑝1 + 𝑘17𝑖conn1, 𝑝2 + 𝑘27𝑖conn1)

𝑖g2 (𝑝3 + 𝑘37𝑖conn1 + 𝑘38𝑖conn2, 𝑝4 + 𝑘47𝑖conn1 + 𝑘48𝑖conn2)
𝑖p2 (𝑝3 + 𝑘37𝑖conn1 + 𝑘38𝑖conn1, 𝑝4 + 𝑘47𝑖conn1 + 𝑘48𝑖conn2)

𝑖g3 (𝑝5 + 𝑘58𝑖conn2, 𝑝6 + 𝑘68𝑖conn2)
𝑖p3 (𝑝5 + 𝑘58𝑖conn2, 𝑝6 + 𝑘68𝑖conn2)

𝑖conn1

𝑖conn2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −
⎡⎣ 𝑝7

𝑝8

⎤⎦

(5.49)
with two unknown variables 𝑖conn1 and 𝑖conn2 to be solved numerically.

The validity of the block decomposition was tested by the comparison of the
output signals of the simulation without the block decomposition and the simulation
with this block decomposition. Both output signals as well as their difference are
shown in Figure 5.22. The input signal was a sine wave with a frequency of 500 Hz
and an amplitude of 0.1 V. The approach was also tested using other input signals
and all showed similar results. The algorithm was also tested in real-time conditions.

144

The computational cost of the Marshall JCM 800 simulation with the connection
currents implemented using the C language was between 10 and 15 % of CPU on
the Intel 2.6 GHz processor.

0 1 2 3 4 5 6 7

x 10
−3

0

100

200

300

400

Time [s]

O
ut

pu
t v

ol
ta

ge
 [V

]

0 50 100 150 200 250 300
−0.05

0

0.05

0.1

0.15

0.2

Time [s]

E
rr

or
 [V

]
without decomposition
with decomposition

Figure 5.22: Output signals (top) and their difference (bottom) for the simulation
of Marshall preamp with and without the decomposition

5.5 Simulation of Circuit with Global Feedback

There are many audio effects or guitar amplifiers which do not have the strict feed-
forward topology and they contain a global feedback. Examples of these effects
can be effect such as delay, flanger, phaser, feedback compressor. The frequency
dependent feedback can also be found in tube push-pull amplifiers. The global
feedback causes that the whole circuit contains the delay free loop and therefore
the whole circuit must be solved without any decomposition. This problem can be
circumvented if a one sample delay block is connected in the feedback. This can
be done without loosing the accuracy for audio effects which use the delay line, e.g.
delay or flanger, because the delay has already been introduced there. Firstly, if the
linear circuit without the delay and the instantaneous global feedback is considered,
the transfer function can be expressed as

𝐻 (𝑧) = 𝐻ff (𝑧)
1 + 𝐻ff (𝑧) 𝐻fb (𝑧) (5.50)

145

and with the delayed feedback

𝐻 (𝑧) = 𝐻ff (𝑧)
1 + 𝑧−1𝐻ff (𝑧) 𝐻fb (𝑧) (5.51)

which means that the frequency response of the audio effect is affected. The impact
of the delayed global feedback can be found directly by comparing both transfer
functions (5.50) and (5.51). Similar behavior can be expected with nonlinear systems
as well.

To find out the impact of the delayed global feedback on the nonlinear system,
the guitar tube power amplifier was chosen as a case study. The typical circuit
schematic of the tube power amplifier is shown in Figure 5.23 and values of the
components are given in Table 5.15 [87]. This circuit is without any simplifications
and consists of the triode phase splitter and the push-pull amplifier, which has
already been discussed earlier concerning different types of the output transformer.
The output transformer here was supplemented with parasitic capacitances 𝐶7, 𝐶8,
𝐶9 and leakage inductances 𝐿1 and 𝐿2. The power amplifier was also supplemented
with the model of the loudspeaker. The loudspeaker is modeled with the electric
impedance model with parameters derived from the measurement of the Celestion
Vintage 30 loudspeaker using the added mass method and Thiele/Small parameters
[96]. Miller parasitic capacitances, marked with blue color, were added too. The
variable global feedback between 𝑉out and 𝑉fdb is marked with red color and it is
adjustable via the resistor 𝑅7.

Table 5.15: Component values of the tube power amplifier.

Component Value Component Value Component Value

𝑅1, 𝑅17, 𝑅18 10 Ω 𝑅2, 𝑅4 1 MΩ 𝑅3 470 Ω
𝑅5 10 kΩ 𝑅6 4.7 kΩ 𝑅7, 𝑅10 100 kΩ
𝑅8 22 kΩ 𝑅9 82 kΩ 𝑅11, 𝑅12 220 kΩ
𝑅13, 𝑅14 5 kΩ 𝑅15, 𝑅16 1 kΩ 𝑅19 6.8 Ω
𝑅20 45 Ω 𝐶1, 𝐶4, 𝐶5 22 nF 𝐶2, 𝐶3 100 nF
𝐶6 1 pF 𝐶7, 𝐶8, 𝐶9 1 nF 𝐶10 193 µF
𝐿1, 𝐿1 10 mH 𝐿3 0.6 mH 𝐿4 23 µF
𝐶m1, 𝐶m2, 𝐶m3, 𝐶m4 1.6 pF 𝑉ps 430 V 𝑉ps2 450 V
𝑁1 1000 𝑁2 1000 𝑁3 50

The whole power amplifier circuit was simulated using the DK-method for four
different topologies:

• The input feedback voltage 𝑣fdb is the additional input of the circuit and it
is obtained from the output voltage 𝑣out delayed by one sample. The Miller

146

𝑁1

𝑁2

𝑅15

𝑅16

𝑅17

𝑅18

𝐿1

𝐿2

𝐶7

𝐶8

𝑣ps2 𝑁3

𝐿3

𝑅19

𝑅20

𝐶10

𝐿4

𝑣out

𝐶9

𝑅13

𝑅14

𝑅11

𝑅12

𝑣bias

𝐶4

𝐶5

𝑅9

𝑅10

𝑣ps
𝐶6

𝑅3𝑅5

𝑅2

𝑅4

𝐶1

𝐶2

𝑅1

𝑣in

𝑅6 𝑅8 𝑅7

𝐶3

𝑣fdb

𝐶m3

𝐶m4

𝐶m1

𝐶m2

Figure 5.23: Circuit schematic of the tube power amplifier.

capacitances are unconnected. The coefficients of the K matrix are separated
for the phase splitter part and the push-pull amplifier part. The K matrix has
following form

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘11 𝑘12 𝑘13 𝑘14 𝑘15 𝑘16 0 0 0 0
𝑘21 𝑘22 𝑘23 𝑘24 𝑘25 𝑘26 0 0 0 0
𝑘31 𝑘32 𝑘33 𝑘34 𝑘35 𝑘36 0 0 0 0
𝑘41 𝑘42 𝑘43 𝑘44 𝑘45 𝑘46 0 0 0 0
𝑘51 𝑘52 𝑘53 𝑘54 𝑘55 𝑘56 0 0 0 0
𝑘61 𝑘62 𝑘63 𝑘64 𝑘65 𝑘66 0 0 0 0
0 0 0 0 0 0 𝑘77 𝑘78 𝑘79 𝑘710

0 0 0 0 0 0 𝑘87 𝑘88 𝑘89 𝑘810

0 0 0 0 0 0 𝑘97 𝑘98 𝑘99 𝑘910

0 0 0 0 0 0 𝑘107 𝑘108 𝑘109 𝑘1010

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This enables the decomposition into two separate parts which can be approxi-
mated to work efficiently in real-time using the linear interpolation.

• The input feedback voltage 𝑣fdb is the additional input of the circuit and it
is obtained from the output voltage 𝑣out delayed by one sample but Miller
capacitances are connected. Because of the feedback coupling caused by pentode
Miller capacitances 𝐶m3 and 𝐶m3, the K matrix coefficients are not separated
for the phase splitter and the push-pull part and thus the circuit must be

147

simulated as one system or connection components designed in the previous
section can be connected between 𝐶4, 𝑅13 and 𝐶5, 𝑅14 (marked with red arrows
in Figure 5.23). Then it requires only the numerical solving for two unknown
variables after the phase splitter and the push-pull part are approximated.

• The input feedback voltage 𝑣fdb node is directly connected with the output
voltage node 𝑣out. Miller capacitances are unconnected. Although there
is no feedback coupling caused by pentode Miller capacitances, the phase
splitter and the push-pull part are still coupled via the global feedback and the
decomposition is only possible using the connection components. It requires
only one connection component representing the feedback current and therefore,
after the approximation, only numerical solving for one unknown variable is
needed.

• The input feedback voltage 𝑣fdb node is directly connected with the output
voltage node 𝑣out and Miller capacitances are connected. The decomposition
is only possible using three connection components – the feedback current
and feed-forward currents between the phase splitter and the push-pull part.
After the approximation of these parts, it requires numerical solving for three
unknown variables in real-time.

All four topologies were simulated without the block decomposition and were
compared with the four topologies decomposed using three connection components.
Foremost, the impact of the delayed global feedback and Miller capacitances to the
transfer function was investigated. Therefore, the frequency response magnitude of
the first harmonic component is shown in Figures 5.24 and 5.25. Figure 5.24 shows
the frequency response magnitude of the first harmonic component for the circuit
with the parameter ”Presence” set to zero (the resistance of the potentiometer 𝑅7 is
set to full 22 kΩ) and Figure 5.25 shows the frequency response for the parameter
”Presence” set to one (the resistance of the potentiometer 𝑅7 is set to zero).

It can be seen that the delayed global feedback affects the transfer function only
for high frequencies but these are still in the audible area. Therefore, the accurate
simulation should contain the not-delayed feedback which, although it requires the
numerical algorithm to solve, is capable to work in real-time because it only has
one unknown variable – the feedback current. The impact of Miller capacitances
is rather small and moreover it is much more computational consuming because it
requires three unknown variables to be solved numerically in real-time. Omitting the
Miller capacitances can be further justified by the fact that there is a loudspeaker
cabinet connected to the power amplifier. These loudspeaker cabinets typically have
the frequency bandwidth up to 7 or 8 kHz as it can be seen from Figure 5.26 where
measured frequency responses of two loudspeaker cabinets are shown. Therefore, the
small variations between the simplified and full model can be masked.

148

10
0

10
1

10
2

10
3

10
4

10
5

−60

−50

−40

−30

−20

−10

0

10

20

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

Delayed fdb, no Miller cap.
Delayed fdb, Miller cap.
No delayed fdb, no Miller cap.
No delayed fdb, Miller cap.
With conn. component

Figure 5.24: Frequency response magnitude of the first harmonic component for
different topologies of the circuit for parameter ”Presence” set to zero.

10
0

10
1

10
2

10
3

10
4

10
5

−60

−50

−40

−30

−20

−10

0

10

20

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

Delayed fdb, no Miller cap.
Delayed fdb, Miller cap.
No delayed fdb, No Miller cap.
No delayed fdb, Miller cap.
With conn. Component

Figure 5.25: Frequency response magnitude of the first harmonic component for
different topologies of the circuit for parameter ”Presence” set to one.

149

10
1

10
2

10
3

10
4

10
5

−50

−45

−40

−35

−30

−25

−20

−15

−10

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

Mesa Boogie
Marshall

Figure 5.26: Frequency response magnitude of measured loudspeaker cabinets – the
Mesa Boogie Rectifier and the Marshall JCM 800.

5.6 Summary

This chapter dealt with the real-time simulation of more complex audio effects
and guitar amplifiers. Three different methods were designed, each with different
computational complexity and different accuracy of the simulation. All proposed
methods make use of the approximation of simpler blocks and these methods are
focused foremost on the accurate connection of these blocks.

The first method was the modified block-wise method. It is an extension of
simple decomposition into blocks. The main idea is connecting two neighbouring
blocks into couples where the first block of the pair is the simulated block and the
other one builds only the nonlinear load for the first block. This method can be
efficiently applied for feed-forward audio effect circuits and it is very suitable for the
implementation in DSP systems with lower computational power. This method was
also implemented in the first versions of the commercial guitar amplifier simulator
AmpLion3.

3http://www.audiffex.com/EN/amplion.html

150

The second method is designed to work with the DK-method. Similarly to the
previous method, this method works with feed-forward audio effect circuits and it is
based on the similar idea that the latter blocks have small influence to the former
block if they are not connected directly. Further it was shown that some blocks of
the circuit can be almost independent on DK-method input variables. This fact
enables reducing the dimension of approximating functions and thus approximating
functions can be faster and they can require a smaller amount of coefficients stored
in memory.

The third method is designed for the simulation of complex systems which contain
feedbacks or very tight coupling of nonlinear devices. This method supposes that
elementary sub-circuits are approximated for inner variables but also contain input
for the current flowing from or into another connected block. Consequently, this
method numerically solves unknown currents flowing between connected blocks in
real-time. This approach enables significant reduction of the order of nonlinear
functions. As a result, complex systems can be numerically solved in real-time while
the accuracy of the simulation remain the same as for the numerical solution of the
whole system without the decomposition.

151

6 QUALITY OF SIMULATION OF AUDIO EF-
FECT CIRCUITS

The evaluation of the simulation quality is inseparable part of the process of designing
the simulation algorithm. Quality of proposed algorithms will be discussed in this
chapter – it will include comparison of simulated and measured output signals in the
time and frequency domain, which is the first step when designing the simulation
algorithm. The designed algorithm will subsequently undergo subjective testing
which will consist of several listening tests. The listening test will be focused on:

• evaluation of quality of the guitar tube preamp simulation,
• comparison of the output transformer models for use in guitar tube power

amplifiers,
• comparison of the approximation of the nonlinear equations and numerical

solving the nonlinear equations,
• audible aliasing distortion.

The listening test will be designed using theory given in literature [97]. This theory
is quite complex and therefore it will not be discussed in this thesis.

6.1 Simulation of the Guitar Tube Preamp Engl
E530

The quality of the simulation will be tested on the guitar preamp Engl E530 simulation.
In order to build the most precise model, the circuit schematic was obtained using
the reverse engineering of the real hardware device. The circuit schematic is, however,
not published in this work due to copyrights. The next step was measuring the
tubes because the tube model is one of the most important parts of the model
and it can significantly affect the overall quality of the simulation of the particular
hardware device. Tubes from the preamp were measured using the measurement
device designed by Ch. Dempwolf and O. Kröning [98, 99] which enables automated
measurement of the tubes with the given step of tube terminal voltages. From this
data, different tube models can be designed using e.g. least mean square fitting
between the tube model and measured data. Measured data can be also approximated
e.g. using the piece-wise cubic spline interpolation to implement the tube model
directly from measured data, which offers the most accurate tube model. This model
has the advantage of continuous derivatives which are needed by numerical algorithm.

The software model of the preamp was constructed using the DK-method and
was supplemented with additional capacitors to model Miller capacitances. The
model allows later decomposition into several blocks containing one tube each. But

152

firstly, the numerical solving of the whole circuit was used to find out the quality of
the proposed model.

Two channels – the clean channel and the crunch channel – of the preamp were
simulated and several input testing signals, namely the sine wave, the sweep signal
as well as the real guitar riff, were used. Figures 6.1 and 6.2 show the comparison of
measured and simulated signals at plate terminals of the simulated preamp clean
channel for the input sine wave with the frequency of 1 kHz and amplitudes of 0.5
and 2 V. The sampling frequency was 44.1 kHz. The measured signals were obtained
using the oscilloscope and the signal generator. Both figures show good match
between the simulated and measured signal. Figure 6.3 shows the frequency response
magnitude of the first harmonic content. The frequency response was measured using
the swept sine technique [54] and the sound card M-Audio Fasttrack. Figures 6.4 and
6.5 show spectrograms of output signals (measured and simulated). The input signal
was swept sine signal with the duration of 100 s and the maximal value of 0.01 V.
The sampling frequency was 44.1 kHz, the simulation used 8 × oversampling. The
output signal from Figure 6.4 contains some hum noise (50 Hz and higher harmonics
up to 5-th) which is not presented in the simulation. The output signal from the
simulation algorithm still contains aliasing distortion, as it can be seen from Figure
6.5.

0.01 0.011 0.012 0.013 0.014 0.015
100

120

140

160

180

200

220

240

260

280

Time [s]

V
ol

ta
ge

 [V
]

Plate 1 measured
Plate 1 simulated
Plate 2 measured
Plate 2 simulated

Figure 6.1: Comparison of measured and simulated voltage signals at plate terminals
of the tubes for input sine wave with the amplitude 0.5 V.

153

0.01 0.011 0.012 0.013 0.014 0.015
80

100

120

140

160

180

200

220

240

260

Time [s]

V
ol

ta
ge

 [V
]

Plate 1 measured
Plate 1 simulated
Plate 2 measured
Plate 2 simulated

Figure 6.2: Comparison of measured and simulated voltage signals at plate terminals
of the tubes for input sine wave with the amplitude 2 V.

10
0

10
1

10
2

10
3

10
4

20

25

30

35

40

45

50

55

60

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

Simulated
Measured

Figure 6.3: Comparison of measured and simulated frequency responses (for the first
harmonic content).

154

Time [s]

F
re

qu
en

cy
 [H

z]

0 10 20 30 40 50 60 70 80 90
16

33

65

131

262

523

1047

2093

4186

8372

16744

Figure 6.4: Spectrogram of the output signal - measured clean channel.

Time [s]

F
re

qu
en

cy
 [H

z]

0 10 20 30 40 50 60 70 80 90
16

33

65

131

262

523

1047

2093

4186

8372

16744

Figure 6.5: Spectrogram of the output signal - simulated clean channel.

155

The crunch channel was analyzed in similar way. The crunch channel consists of
three triodes and the tone stack connected between the first and the second tube.
The clean channel has only two triodes and therefore the crunch channel has more of
nonlinear distortion. The comparison of the measured and simulated signal for the
input sine wave signal at plate terminals of all three triodes is shown in Figures 6.6
and 6.6. Results show that the output signal from the simulation is very close to
the measured one, however the difference at the third plate voltage is visible. This
difference was caused by small shifting of the operating point of the third triode in
the dynamic mode. Figure 6.8 shows the frequency response magnitude of the first
harmonic content of the measured preamp and its simulation. Figures 6.9 and 6.10
show spectrograms of output signals (measured and simulated). 16 × oversampling
was used to reduce the aliasing distortion in the simulation algorithm.

All figures showed that the proposed model offers the accurate simulation although
output signals of the real device and the simulation algorithm are not identical.
However, all circuit components have tolerance in their values and therefore values
used in the model can be fitted to get better results. The tube model is not probably
accurate enough as well. Therefore, the next step is a verification using the listening
test.

0.01 0.011 0.012 0.013 0.014 0.015
60

80

100

120

140

160

180

200

220

240

260

Time [s]

V
ol

ta
ge

 [V
]

Plate 1 measured
Plate 1 simulated
Plate 2 measured
Plate 2 simulated
Plate 3 measured
Plate 3 simulated

Figure 6.6: Comparison of measured and simulated voltage signals at plate terminals
of the tubes for input sine wave with the amplitude 0.5 V.

156

0.01 0.011 0.012 0.013 0.014 0.015
50

100

150

200

250

300

Time [s]

V
ol

ta
ge

 [V
]

Plate 1 measured
Plate 1 simulated
Plate 2 measured
Plate 2 simulated
Plate 3 measured
Plate 3 simulated

Figure 6.7: Comparison of measured and simulated voltage signals at plate terminals
of the tubes for input sine wave with the amplitude 2 V.

10
0

10
1

10
2

10
3

10
4

20

30

40

50

60

70

80

90

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

Simulated
Measured

Figure 6.8: Comparison of measured and simulated frequency responses (for the first
harmonic content).

157

Time

F
re

qu
en

cy
 H

z

0 10 20 30 40 50 60 70 80 90
16

33

65

131

262

523

1047

2093

4186

8372

16744

Figure 6.9: Spectrogram of the output signal - measured crunch channel.

Time

H
z

0 10 20 30 40 50 60 70 80 90
16

33

65

131

262

523

1047

2093

4186

8372

16744

Figure 6.10: Spectrogram of the output signal - simulated crunch channel.

158

6.2 Subjective evaluation of guitar tube preamp
simulation

When talking about the quality of the simulation of audio effects, the subjective
evaluation of quality is more important than the objective evaluation. Unfortunately,
the subjective quality evaluation can not be obtained as simply as the objective
evaluation and the process of subjective evaluation of the quality requires listening
tests with several people. Results of the listening test must be then processed
statistically to find final results of the test. There are more types of listening tests,
each suitable for different applications. We need the comparison of two sounds – one
measured and one simulated and therefore ABX Double Blind Test, commonly used
for the assessment of small impairments, e.g. the quality evaluation of audio codecs,
was chosen [100, 101, 102]. The principle of the method is following. There are three
sound samples with small impairments, samples A and B are reference samples (A is
the measured signal and B is the simulated signal) and the sample X is randomly
chosen sample A or B. Listeners are asked to recognize whether the sample X is
the reference sample A or B. Listeners’s answers are classified into two categories –
correct and incorrect answers and they are tested statistically.

The listening test was divided into these stages:
1. Generation of testing audio signals – The ABX listen test requires audio

signals with very small impairments otherwise it would be very easy to recognize
the unknown sound sample X. Therefore, the input signal for the real device
and the simulation algorithm must be exactly the same. It should be also
tested with wide variety of real signals. Therefore, 10 different guitar riffs of
several playing styles were recorded directly into the computer. The length
of the riffs was around 20 s. The audio output port of the computer was
connected to the measured guitar preamp. Firstly a testing sine wave signal
was played and measured at the input and the output of the guitar preamp
to find levels of the input and the output signal. Subsequently, all the guitar
signals were played and output signals from the guitar preamp were again
recorded into the computer. Dry guitar riffs were normalized to the same level
which was at the input of the guitar preamp and then they were processed
by the algorithm which simulates the guitar preamp. The 8 × oversampling
was used to reduce aliasing distortion. Output signals from the simulation
were normalized to the same level as recorded output signals of the real guitar
preamp. Although very good match between the measured and the simulated
signal was achieved, the signals were recognizable due to the noise generated
by the guitar preamp itself, which was missing in the simulation algorithm.

159

Therefore, this noise was recorded with no input signal and it was added to
the simulated signals. Finally, the triplets A,B,X were assembled and stored in
multichannel wav sound files denoted as A1, A2, ..., A10 for the clean channel
of the guitar preamp and B1, B2, ..., B10 for the crunch channel.

2. Preparation of necessary equipment (hardware and software) – Hard-
ware used for the listening test consisted of the laptop, the external sound card
M-Audio Fasttrack, and headphones AKG K-77. The laptop was equipped
with software Cubase 5 1 which allows the playback of multichannel wav files.
Because only one channel from the wav file can be played in a time, the VST
plug-in effect which enables routing of the selected input channel to all output
channels was implemented. This plug-in effect allows switching between signals
A, B and X during the playback and thus, the judgment is more comfortable.

3. Preparation of the process of the listening test – Firstly, instructions
for the listening test were written in Czech and English language. The English
instructions can be found in Appendix G. Because the used software does
not allow the automatic acquisition of listener’s answers, an answer form was
used. The answer form can be found in Appendix H. The next phase was
the pretesting. This phase is important because potential shortcomings of the
designed test can be revealed during this phase. This phase also can show time
requirements. The judgment of all 20 files requires approximately 35 minutes.

4. Performing of the listening test – The listening test was performed with
each listener individually. Each listener was familiarized with the software and
hardware and the test’s instructions. Subsequently, it was shown how to judge
the files. Because this listening test is of the forced choice type, listeners were
told that they have to choose the answer randomly if they are not sure about
the answer. The listening test was a partially controlled experiment. Listeners
worked independently and were able to adjust the tempo to their abilities but
they had chance to ask the experiment leader if they were not sure.

5. Processing of the obtained data – Answers were corrected and the number
of correct and incorrect answers was determined. The next phase is the
statistical testing of results. Two statistical hypothesis were introduced:

• 𝐻0 – Differences between the measured and the simulated signal are not
audible and listeners have to guess the answer. The probability of the
correct answer is 𝑝0 = 0.5.

• 𝐻1 – Differences between the measured and the simulated signal are
audible. The probability of the correct answer 𝑝1 > 0.5.

Because there are only two possible results of the experiment (correct or
1http://www.steinberg.net/de/products/cubase/

160

incorrect identification), the probability distribution of the identifications is
determined by the binomial distribution [102]

𝑃 (𝑛, 𝑘, 𝑝) =
⎛⎝ 𝑛

𝑘

⎞⎠ 𝑝𝑘(1− 𝑝)𝑛−𝑘 (6.1)

with probability 𝑝 = 0.5 and the number of experiments 𝑛 and the number of
hits 𝑘. It is possible to derive the number of correct identifications for the given
level of significance 𝛼 = 0.05 which are needed to reject the null hypothesis 𝐻0.

6.2.1 Results

The listening test had 15 participants – guitarists, professional musicians, sound and
audio engineers. Each listener had to identify 10 sound samples for each channel.
Thus, the total number of independent experiments per channel was 150. Using the
level of significance 𝛼 = 0.05, the total number of correct identifications needed to
reject the null hypothesis is 85 and more (probability distribution > 0.95). Table
6.1 shows results of the test – the number of correct identifications as well as the
average difficulty to distinguish the simulated and the measured signal on the scale 1
– 5 where 5 is the most difficult.

Table 6.1: Results of subjective evaluation of preamp simulation.

Channel Correct identifications Difficulty to judge

Clean 83 4.41
Crunch 90 4.60

Results showed very good quality of the simulation. The number of correct
identifications of the clean channel of the preamp was not sufficient to reject the
null hypothesis and therefore we can say that measured and simulated signals are
not distinguishable. The number of correct identifications of the crunch channel was
sufficient to reject the null hypothesis. It means that signals are distinguishable but
it requires big effort due to the high value of difficulty. These results are related
to the whole group of listeners. From the individual listener point of view, results
depend on abilities of each listener. Most of them were guessing and sometimes
were able to distinguish the samples. Only two listeners were able to differ the
samples correctly and name or describe the sound artefacts which were different for
the samples. It was the different bass frequency response of the clean channel and
the different compression of the output signal and mistuned higher harmonics of

161

the crunch preamp. The bass frequency response could be fitted by changing the
components values. The different compression can be caused by use of the simplified
power supply circuit. The model should be supplemented with a diode rectifier model
instead of the constant voltage used in the model. The problem of the mistuned
higher harmonics can come from the presence of aliasing distortion. Although 8 ×
oversampling was used, it does not have to be enough for some people.

6.3 Subjective Comparison of Interpolation Tech-
niques

Chapters 4.3 and 4.4 were focused on the objective comparison of several interpolation
techniques. All techniques provides very good function approximation if sufficient
amount of data is used. The total amount of data can be significantly reduced
using the nonuniform interpolation and algorithms 1 and 2. The amount of data
depends on the given approximation error. But the permitted value of this error,
for which is the result not audible, is unknown. Therefore, the listening test was
designed to investigate this error. The VST plug-in effect with the simulation of the
tube amplifier was implemented. This plug-in effect uses the DK-method and the
nonlinear implicit equation is substituted with the approximated nonlinear plate
current of the triode. The dimension of the approximation is 2. It is possible to
choose which type of interpolation described in chapters 4.3 and 4.4 is used. It is also
possible to change the amount of data used for the interpolation. Original data were
reduced using the algorithm 2 and the reduced data from each iteration were stored
under the given iteration index. The higher index means the higher approximation
error but lower amount of data to be stored. The listener can change the value of
the index using the slider control in the plug-in Graphical User Interface (GUI). The
listeners were asked to increase the index until they were able to hear difference
between the reduced and full set of data for each type of the interpolation. After
that, they had to write the values into the answer form (see Appendix H). Results
are available in Table 6.2.

The audible interpolation error is around 7× 10−4 mA, only the Hermite cubic
interpolation permits higher value. The cubic spline type 1 has the lower data
reduction in this case (interestingly it is in contrast with the 1D approximation in
Figure 4.4 and Table 4.3). All other interpolation types provides very similar results
and therefore one can choose the interpolation type according to the computational
cost. The best interpolation types are: the Hermite cubic interpolation if the amount
of data should be minimal or the linear interpolation if the computational cost should
be minimal.

162

Table 6.2: Results of the comparison of interpolation techniques using the listening
test.

Interpolation Average audible error Number of points number of coefficients

Spline 1 7.05× 10−4 1872 29952
Spline 2 7.26× 10−4 720 1440
Hermite 13.18× 10−4 690 690
Newton 9.09× 10−4 539 539
Linear 6.28× 10−4 714 714

6.4 Subjective Comparison of Output Transformer
Model

Three types of the output transformer were mentioned in chapter 3.1. It was shown
that the nonlinear output transformer model affects low frequencies and adds the
nonlinear distortion at these low frequencies. The difference between the nonlinear
output transformer with and without the hysteresis effect was very small. All these
output transformer models – the linear, the nonlinear without the hysteresis and
the nonlinear with the hysteresis – were compared using the subjective testing.
Two guitar riffs were processed by the simulation of the power amplifier with all
transformer models. Output signals for different output transformer models were
compared using the ABX listening test, considering the same statistical hypothesis
𝐻0 and 𝐻1. Each listener had to compare four triplets A,B,X with the linear and the
nonlinear transformer model and four triplets with the transformer model with and
without the hysteresis. The number of correct identifications needed to reject the
null hypothesis 𝐻0 is 36 of total 60. Results of the listening test are given in Table
6.3. As it can be seen, the number of correct identifications is not enough to reject
the null hypothesis and therefore, in this case, all transformer models lead to the
same audio perception. Because the linear transformer model is much simpler than
the other models, it is advantageous to use this model. But of course, this conclusion
is valid only for the used transformer model Fender NSC041318.

6.5 Audible Aliasing Distortion

The last listening test was focused on the audible aliasing distortion. It is known that
the generation of aliasing distortion is the consequence of the nonlinear processing

163

Table 6.3: Results of transformer model listening test.

Model comparison Correct identifications Difficulty to judge

Linear x Nonlinear 32 4.70
Hysteresis x Without hysteresis 31 4.88

of audio signals. The amount of aliasing distortion can be reduced by use of high
sampling frequencies and oversampling techniques. The situation is especially critical
if the full-bandwidth audio signal is processed. This is not however the case of the
guitar signal processing because the frequency bandwidth of the electric guitar is
limited. The listening test is designed to determine the over-sampling factor which
is needed to reduce the aliasing distortion to inaudible level. A recorded guitar
solo served as the input signal for the listening test. The nonlinear distortion was
applied on the input signal together with the oversampling technique with different
oversampling factors. Listeners were asked to determine if the tested signal is the
same as the reference signal. The reference signal was the same distorted guitar
signal computed with the oversampling factor equal to 64.

Five guitar signals with different amount of the amplification before the nonlinear
processing were used for the test. The amplification was 20, 30, 40, 50 and 60 dB.
The nonlinear function was 𝑦 = tanh(𝑥). The Total Harmonic Distortion (THD) is
computed for each amplification using the sine wave signal to identify each guitar
riff. Results of the test are in Table 6.4.

Table 6.4: Results of audible aliasing distortion listening test.

THD Average oversampling Standard Max. oversampling
factor deviation factor

0.17 2.79 1.97 6
0.36 3.07 2.43 6
0.44 3.29 3.02 10
0.45 4.21 3.62 12
0.46 3.57 4.20 14

The 4 × oversampling is sufficient for the most of the people but some musicians
can hear aliasing distortion until the 14 × oversampling is used for highly distorted
signals. This fact confirms that aliasing distortion was one of the artefacts which

164

were audible in the listening test for comparing the simulation of the preamp with the
hardware device. Note that the last three guitar signals were very highly distorted
and that the aliasing distortion was heard only by two people. Therefore, 8 ×
oversampling should be sufficient for the most of musicians without hearing the
aliasing distortion.

6.6 Summary

The Engl E530 guitar preamp was chosen as a case study. It was properly measured
and the simulation algorithm was designed using the circuit schematic and measured
data of installed tubes. The quality of the simulation algorithm was evaluated using
set of testing signals and real guitar samples. The test signals were used for the
proper designing of the algorithm and the guitar riffs for the subjective evaluation
of the quality. Results showed that the proposed simulation model offers very good
quality of the simulation. Although some listeners were able to differ the simulation
algorithm and the real device, the most of the listeners were guessing during the
listening test.

This model can be approximated using the approximation of triode stages which
are connected using the connection current technique. This algorithm is then able to
work in real-time with the same accuracy. The amount of data which is used for the
approximation can be reduced by the designed algorithm 2 with the maximal error
7× 10−4 mA.

One of the listening tests was focused on the audible aliasing distortion in the
output signal. It was found that use of 8 × oversampling should be sufficient for the
most of musicians but 4 × oversampling is sufficient on average.

165

7 CONCLUSION

This thesis was focused on the real-time simulation of analog guitar amplifiers and
audio effects circuits. This problematic is quite extensive and complex and covers
many different fields – the analog circuits analysis (electric and magnetic), the digital
signal processing, the computer science etc.

The main aim of the thesis was to design algorithms for the digital signal
processing which emulate analog audio circuits with sufficient accuracy but they
are still able to work in real-time. While the constraint of working in real-time is
given by the computational complexity and can be unambiguously derived from the
number of mathematical operations and the computational power of the processor
(either DSP or common processor installed in personal computers), the term accuracy
of the simulation could be little bit ambiguous. The ideal situation is to produce
exactly the same output signal from the simulation algorithm and the real device.
This however requires to use very complex model of simulation with computational
complexity much higher than what is currently possible to compute in real-time.
Nevertheless, the term accurate emulation can also stand for the state when output
signals from the simulation algorithm and the real device differ in some details but
the audio perception is the same. The model can be then simpler but it must be
verified by listening tests.

This work was split into five main chapters. The first one was detailed overview of
existing algorithms.. The following chapters were focused on the simulation of simple
audio circuits with circuit components which were not discuss in detail earlier. The
chapter five was the crucial chapter of this thesis and it dealt with the simulation of
more complex systems. The last chapter was focused on the quality of the simulation
of analog audio circuits. The quality of simulation was investigated using subjective
testing based on listening tests. The results showed that the proposed algorithm
offers very good quality of the real-time simulation.

The main contributions of this work are:
• Incorporation of transformer model into the automated DK-method.

It allows the automated derivation of DK-method matrices from incidence
matrices for circuits containing the transformer (e.g. input stages of some
audio effects or the tube push-pull power amplifier). Further, four types
of transformer models were compared with regards to the computational
complexity, the stability of solution, the accuracy and the audio perception.
Modeling the hysteresis effect significantly increases the computational cost
and it can introduce the numerical instability but the impact of the hysteresis
effect to the output signal is very subtle. It is therefore sufficient to use the
GC-model without the hysteresis or the linear model of transformer core whose

166

use is still sufficient, without introducing audible difference in the output signal,
in some circuits.

• Incorporation of operational amplifier model into the automated
DK-method. It allows the automated derivation of DK-method matrices
from incidence matrices for circuits containing operational amplifiers. Two
types of operational amplifier models were used – the linear, which is suitable
for simulation of analog filter circuits, and the nonlinear, which can be used in
simulations of circuits with comparators, e.g. LFO generators.

• Non-uniformly gridded interpolation. The efficient interpolation with
non-uniformly gridded data and the direct computation of the interpolation
interval was introduced. Further, the algorithm for reduction of stored data
was designed. This allows the significant reduction of look-up tables sizes.

• Method of the direct approximation of nonlinear ODEs. This algo-
rithm provides very efficient simulation of dynamic nonlinear systems which
have order of the system (number of states) lower than the number of nonlinear
components (nonlinear equations) in the system. The big advantage is that
stored data in look-up tables are independent on the sampling frequency value.

• Modified block-wise method. This method was designed for the decom-
position into simpler blocks in such way that the mutual interaction between
adjoined blocks is preserved. This method however assumes that there is no
interaction between the first block and third block connected to the second
block as the nonlinear load. This assumption is valid e.g. for guitar tube
preamps.

• Block decomposition of the DK-method nonlinear core. This method
enables simulation of the whole circuit without a prior decomposition into
blocks. Only the DK-method nonlinear equation can be decomposed into
separate equations in case that the simulated circuit has feed-forward topology.
This method also assumes very small dependence between the first and the
third nonlinear circuit component (connected in series). This dependence can
be revealed using the correlation analysis.

• Block decomposition using connection currents. This decomposition
also enables the simulation of the whole circuit at once. But comparing to the
previous one, it is suitable also for feedback systems. DK-method nonlinear
equations are split using the unknown connection current. Each simple block,
typically of dimension of two, can be easily approximated. Then only the
unknown connection currents are computed. The disadvantage is that the
connections currents have to be computed numerically. On the other hand,
results of this method are comparable to the numerical solving of the whole
circuit while the number of unknown variables to be solved is much lower and

167

thus the computational cost is also much lower.
All proposed algorithms can find their employment in several applications for

musicians and some of them have already been used in the software for guitar
real-time processing 1. Listening test showed that very high level of quality of
the emulation was achieved. However, there are still some nuances which can be
heard. Measurements also showed that the static model of the tube is not sufficiently
accurate. The behavior of the grid current is different in the dynamic and the static
mode. This model could be improved in future work.

1http://www.audiffex.com/EN/amplion.html

168

AUTHOR’S PUBLICATIONS

[1] J. Mačák, “Simulation of the diode limiter using linear time variable filter,” in
Proceedings of the 15th Conference STUDENT EEICT, Brno, Czech Republic,
2009, pp. 264–268.

[2] ——, “Návrh algoritmů číslicového zpracování zvukových signálů pro simulaci
kytarového komba,” in Proceedings of the 14th Conference STUDENT EEICT,
Brno, Czech Republic, 2008, pp. 73–75.

[3] J. Mačák and J. Schimmel, “Nonlinear circuit simulation using time-variant
filter,” in Proceedings of the 12th International Conference on Digital Audio
Effects DAFx09, Como, Italy, Sep. 1-4, 2009, pp. 1–5.

[4] J. Mačák, “Nonlinear transformer simulation for real- time digital audio signal
processing,” in Proceedings of 34th International Conference on Telecommu-
nications and Signal Processing - TSP 2011, Budapest, Hungary, Aug. 18-20,
2011.

[5] ——, “Nonlinear audio transformer simulation using approximation of differential
equations,” Elektrorevue - Internet journal (http://www.elektrorevue.cz), vol.
2011, no. 4, pp. 22–29, 2011.

[6] J. Mačák and J. Schimmel, “Simulation of a vacuum-tube push-pull guitar power
amplifier,” in Proceedings of the 14th International Conference on Digital Audio
Effects DAFx11, Paris, France, Sept. 19–23„ 2011.

[7] J. Mačák and V. Tichý, “Využití interpolace pro simulaci elektroaku-
stických měničů v reálném čase,” Elektrorevue - Internet journal
(http://www.elektrorevue.cz), vol. 2011, no. 25, pp. 1–8, 2011.

[8] J. Mačák and J. Schimmel, “Real-time guitar tube amplifier simulation using
approximation of differential equations,” in Proceedings of the 13th International
Conference on Digital Audio Effects DAFx10, Graz, Austria, Sep. 6-10, 2010.

[9] J. Mačák, “Modified blockwise method for simulation of guitar tube amplifiers,”
in Proceedings of 33nd International Conference Telecommunications and Signal
Processing TSP - 2010, Baden near Vienna, Austria, Aug. 17-20, 2010, pp. 1–4.

[10] ——, “Verification of blockwise method for simulation of guitar ampli fiers on a
guitar tube preamp,” Elektrorevue (http://www.elektrorevue.cz), vol. 1, no. 2,
pp. 16–21, 2010.

169

[11] J. Mačák and J. Schimmel, “Real-time guitar preamp simulation using modified
blockwise method and approximations,” EURASIP Journal on Advances in
Signal Processing, vol. 2011, p. 11, 2011.

[12] J. Mačák, M. Holters, and J. Schimmel, “Simulation of a vacuum-tube push-pull
guitar power amplifier,” in Proceedings of the 15th International Conference on
Digital Audio Effects DAFx12, York, United Kingdom, Sept. 17–21„ 2012.

170

BIBLIOGRAPHY

[13] L. W. Nagel and D. Pederson, “Spice (simulation program with
integrated circuit emphasis),” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/ERL M382, Apr 1973. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html

[14] U. Zölzer, DAFX - Digital Audio Effects, 2nd ed. New York: J. Wiley & Sons,
Ltd, 2011.

[15] J. Schimmel, “Syntéza zvukových efektů s využitím nelineárního zpracování
signálů,” Ph.D. dissertation, Brno University of Technology, Brno, 2006.

[16] ——, “Objective evaluation of audible aliasing distortion in digital audio syn-
thesis,” in Proceedings of 34th International Conference on Telecommunications
and Signal Processing TSP, Budapest, Hungary, Aug. 18–20, 2011, pp. 343–347.

[17] J. Pakarinen and M. Karjalainen, “Enhanced wave digital triode model for
real-time tube amplifier emulation,” IEEE Transactions on Audio, Speech &
Language Processing, vol. 18, no. 4, pp. 738–746, 2010.

[18] J. Pakarinen and D. T. Yeh, “A review of digital techniques for modeling
vacuum-tube guitar amplifiers,” Computer Music J., vol. 33, no. 2, pp. 85–100,
Jun. 2009.

[19] D. V. Curtis, C. K. Lance, and C. C. Adams, “Simulated tone stack
for electric guitar,” Patent 6 222 110, April, 2001. [Online]. Available:
http://www.freepatentsonline.com/6222110.html

[20] D. T. Yeh, J. S. Abel, and J. O. Smith, “Automated physical modeling of nonlin-
ear audio circuits for real-time audio effects - part i: Theoretical development,”
Audio, Speech, and Language Processing, IEEE Transactions on, vol. 18, no. 4,
pp. 728 –737, May 2010.

[21] D. Yeh, “Automated physical modeling of nonlinear audio circuits for real-time
audio effects - Part II: BJT and vacuum tube examples,” IEEE Trans. Audio,
Speech, and Language Processing, vol. 20, no. 4, pp. 1207–1216, may 2012.

[22] D. T. Yeh, “Digital implementation of musical distortion circuits by analysis
and simulation,” Ph.D. dissertation, Center for Computer Research in Music
and Acoustics, Stanford, 2009.

171

http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
http://www.freepatentsonline.com/6222110.html

[23] D. Biolek, “Novel model library of snap 2.6x freeware for analysis
of (not only) current-mode circuits,” Elektrorevue - Internet journal
(http://www.elektrorevue.cz), vol. 2004, no. 44, 204.

[24] D. T. Yeh, J. S. Abel, and J. O. Smith, “Simulation of the diode limiter in guitar
distortion circuits by numerical solution of ordinary differential equations,” in
Proc. Digital Audio Effects (DAFx-07), Bordeaux, France, Sep. 10-15, 2007, pp.
197–204.

[25] D. T. Yeh, J. S. Abel, A. Vladimirescu, and J. O. Smith, “Numerical
methods for simulation of guitar distortion circuits,” Computer Music
Journal, vol. 32, no. 2, pp. 23–42, 2008. [Online]. Available: http:
//www.mitpressjournals.org/doi/abs/10.1162/comj.2008.32.2.23

[26] A. Huovilainnen, “Nonlinear digital implementation of the moog ladder filter,”
in Proc. Digital Audio Effects (DAFx-04), Naples, Italy, Sep. 5-8, 2004, pp.
61–64.

[27] R. Melville, L. Trajkovic, S.-C. Fang, and L. Watson, “Artificial parameter
homotopy methods for the dc operating point problem,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, vol. 12, no. 6, pp.
861 –877, jun 1993.

[28] J. O. Smith, Physical Audio Signal Processing, 1st ed. USA: W3K Publishing,
2010.

[29] S. Möller, M. Gromowski, and U. Zölzer, “A measurement technique for highly
nonlinear transfer functions,” in Proc. Digital Audio Effects (DAFx-02), Ham-
burg, Germany, Sep. 26-28, 2002, pp. 203–206.

[30] M. Karjalainen and J. Pakarinen, “Wave digital simulation of a vacuum-tube
amplifier,” in Proc. Intl. Conf. on Acoustics, Speech, and Signal Proc., Toulouse,
France, May 15-19, 2006, pp. 153–156.

[31] J. Pakarinen, M. Tikander, and M. Karjalainen, “Wave digital modeling of the
output chain of a vacuum-tube amplifier,” in Proc. of the Int. Conf. on Digital
Audio Effects (DAFx-09), Como, Italy, Sept. 1–4, 2009, pp. 1–4.

[32] D. T. Yeh, J. S. Abel, and J. O. Smith, “Simplified, physically-informed models
of distortion and overdrive guitar effects pedal,” in Proc. Digital Audio Effects
(DAFx-07), Bordeaux, France, Sep. 10-15, 2007, pp. 189–196.

172

http://www.mitpressjournals.org/doi/abs/10.1162/comj.2008.32.2.23
http://www.mitpressjournals.org/doi/abs/10.1162/comj.2008.32.2.23

[33] D. T. Yeh and J. O. Smith, “Discretization of the ’59 Fender Bassman tone
stack,” in Proc. of the Int. Conf. on Digital Audio Effects (DAFx-06), Montreal,
Quebec, Canada, Sept. 18–20, 2006, pp. 1–4.

[34] J. Mačák, “Návrh algoritmů číslicového zpracování signálů pro simulaci ky-
tarových zesilovačů založených na obvodové analýze analogových prototypů,”
Master’s thesis, Brno University of Technology, Brno, 2008.

[35] G. Borin, G. De Poli, and D. Rocchesso, “Elimination of delay-free loops in
discrete-time models of nonlinear acoustic systems,” in Applications of Signal
Processing to Audio and Acoustics, 1997. 1997 IEEE ASSP Workshop on, oct
1997, p. 4 pp.

[36] A. Fettweis, “Wave digital filters: Theory and practice,” Proceedings of the
IEEE, vol. 74, no. 2, pp. 270 – 327, feb. 1986.

[37] K. Meerkotter and R. Scholz, “Digital simulation of nonlinear circuits by wave
digital filter principles,” in Circuits and Systems, 1989., IEEE International
Symposium on, may 1989, pp. 720 –723 vol.1.

[38] T. Felderhoff, “A new wave description for nonlinear elements,” in Circuits and
Systems, 1996. ISCAS ’96., Connecting the World., 1996 IEEE International
Symposium on, vol. 3, may 1996, pp. 221 –224 vol.3.

[39] A. Sarti and G. De Poli, “Toward nonlinear wave digital filters,” Signal Process-
ing, IEEE Transactions on, vol. 47, no. 6, pp. 1654 –1668, jun 1999.

[40] D. T. Yeh and J. O. Smith, “Simulating guitar distortion circuits using wave
digital and nonlinear state-space formulations,” in Proc. Digital Audio Effects
(DAFx-08), Espoo, Finland, Sept. 1-4, 2008, pp. 19–26.

[41] A. Sarti and G. De Sanctis, “Systematic methods for the implementation of
nonlinear wave-digital structures,” Circuits and Systems I: Regular Papers,
IEEE Transactions on, vol. 56, no. 2, pp. 460 –472, feb. 2009.

[42] R. Rabenstein, S. Petrausch, A. Sarti, G. De Sanctis, C. Erkut, and M. Kar-
jalainen, “Blocked-based physical modeling for digital sound synthesis,” Signal
Processing Magazine, IEEE, vol. 24, no. 2, pp. 42 –54, march 2007.

[43] M. Karjalainen, “Blockcompiler: Efficient simulation of acoustic and audio
systems,” in Proceedings of the 114th AES Convention, Amsterdam, Netherlands,
March 22-25, 2003.

173

[44] ——, “A research tool for physical modeling and dsp,” in Proceedings of the
6th International Conference on Digital Audio Effects (DAFx-03), London, UK,
Sept. 8–11, 2003, pp. 264–269.

[45] S. Petrausch and R. Rabenstein, “Wave digital filters with multiple nonlin-
earities,” in Proceedings of the XII European Signal Processing Conference
(EUSIPCO), Vienna, Austria, Sept. 2004, p. 77–80.

[46] R. C. D. de Paiva, J. Pakarinen, V. Välimäki, and M. Tikander, “Real-time
audio transformer emulation for virtual tube amplifiers,” EURASIP Journal on
Advances in Signal Processing, vol. 2011, p. 15, 2011.

[47] W. J. Rugh, Nonlinear System Theory: The Volterra/Wiener Approach, 1st ed.
USA: The Johns Hopkins University Press, 1981.

[48] D. Kocur, Adaptívne Volterrove číslicové filtre. Košice: Elfa, s.r.o., 2001.

[49] T. Hélie, “On the use of Volterra series for efficient real-time simulations of
weakly nonlinear analog audio devices: Application to the Moog ladder filter,”
in Proc. of the Int. Conf. on Digital Audio Effects (DAFx-06), Montreal, Quebec,
Canada, Sept. 18–20, 2006, pp. 7–12, http://www.dafx.ca/proceedings/papers/
p_007.pdf.

[50] A. Novák, “Identification of nonlinear systems: Volterra series simlification,”
Acta Polytechnica Journal of Advanced Engineering, vol. 47, no. 4-5, May 2007.

[51] A. Farina, “Nonlinear convolution: A new approach for the auralization of
distoring systems,” in Proceedings of the 100th AES Convection, Amsterdam,
Netherlands, 2001, pp. 12–15.

[52] A. Novák, S. Lotton, and F. Kadlec, “Modeling of nonlinear audio systems
using swept-sine signals: Application to audio effects,” in Proceedings of the
12th International Conference on Digital Audio Effects DAFx09, Como, Italy,
Sep. 1-4, 2009, pp. 1–6.

[53] A. Novák, L. Simon, P. Lotton, and J. Gilbert, “Chebyshev model and synchro-
nized swept sine method in nonlinear audio effect modeling,” in Proceedings
of the 13th International Conference on Digital Audio Effects DAFx10, Graz,
Austria, Sep. 6-10, 2010.

[54] ——, “Analysis, synthesis, and classification of nonlinear systems using synchro-
nized swept-sine method for audio effects,” EURASIP Journal on Advances in
Signal Processing, vol. 2010, p. 8, 2010.

174

http://www.dafx.ca/proceedings/papers/p_007.pdf
http://www.dafx.ca/proceedings/papers/p_007.pdf

[55] J. Pakarinen, V. Välimäki, F. Fontana, V. Lazzrini, and J. S. Abel, “Re-
cent advances in real-timemusical effects, synthesis, and virtual analogmodels,”
EURASIP Journal on Advances in Signal Processing, vol. 2011, p. 15, 2011.

[56] J. Parker, “A simple digital model of the diode-based ring-modulator,” in Proc.
Digital Audio Effects (DAFx-11), Paris, France, Sept. 19–23, 2011.

[57] C. Raffel and J. Smith, “Practical modeling of bucket-brigade device circuits,”
in Proceedings of the 13th International Conference on Digital Audio Effects
DAFx10, Graz, Austria, Sep. 6-10, 2010.

[58] J. Timoney, V. Lazarini, A. Gibney, and J. Pekonen, “Digital emulation of
distortion effects by wave and phase shaping methods,” in Proceedings of the
13th International Conference on Digital Audio Effects DAFx10, Graz, Austria,
Sep. 6-10, 2010.

[59] J. Pekonen, “Coefficient-modulated first order allpass filter as a distortion effect,”
in Proc. Digital Audio Effects (DAFx-08), Espoo, Finland, Sept. 1-4, 2008.

[60] R. C. D. de Paiva, J. Pakarinen, and V. Välimäki, “Reduced-complexity modeling
of high-order nonlinear audio systems using swept-sine and principal component
analysis,” in Proc. of the AES 45𝑡ℎ International Conference: Applications of
Time-Frequency Processing in Audio, Helsinki, Finland, March. 1-4, 2012.

[61] M. Fink and R. Rabenstein, “A csound opcode for a triode stage of a vacuum
tube amplifier,” in Proc. Digital Audio Effects (DAFx-11), Paris, France, Sept.
19–23, 2011.

[62] G. De Sanctis and A. Sarti, “Virtual analog modeling in the wave-digital domain,”
Audio, Speech, and Language Processing, IEEE Transactions on, vol. 18, no. 4,
pp. 715 –727, may 2010.

[63] I. Cohen and T. Helie, “Real-time simulation of a guitar power amplifier,”
in Proceedings of the 13th International Conference on Digital Audio Effects
DAFx10, Graz, Austria, Sep. 6-10, 2010.

[64] ——, “Simulation of a guitar amplifier stage for several triode models: Exami-
nation of some relevant phenomena and choice of adapted numerical schemes,”
in Proceedings of the 127th Convention of Audio Engineering Society, New York,
USA, Oct. 9-12, 2009.

[65] ——, “Measures and parameter estimation of triodes, for the real-time simulation
of a multi-stage guitar preamplifier,” in Proceedings of the 129th Convention of
Audio Engineering Society, San Francisco, USA, Nov. 4-7, 2010.

175

[66] M. Holters and U. Zölzer, “Physical modelling of a wah-wah effect pedal as
a case study for application of the nodal dk method to circuits with variable
parts,” in Proceedings of the 14th International Conference on Digital Audio
Effects DAFx11, Paris, France, Sept. 19–23„ 2011.

[67] K. Dempwolf, M. Holters, and U. Zölzer, “Discretization of parametric analog
circuits for real-time simulations,” in Proceedings of the 13th International
Conference on Digital Audio Effects DAFx10, Graz, Austria, Sep. 6-10, 2010.

[68] A. Vlasimirescu, The Spice Book, 1st ed. USA: John Wiley & Sons, Inc., 1994.

[69] K. Dempwolf and U. Zölzer, “A physically-motivated triode model for circuit
simulations,” in Proc. Digital Audio Effects (DAFx-11), Paris, France, Sept.
19–23, 2011.

[70] N. Koren, “Improved Vacuum Tube Models for SPICE Simula-
tions,” 2003, [online], Available from http://www.normankoren.
com/Audio/Tubemodspice_article.html.

[71] T. Serafini, “A Complete Model of a Tube Amplifier Stage,” 2002, [online],
Available from http://www. simulanalog.org/tubestage.pdf.

[72] G. Cardarilli, M. Re, and L. Di Carlo, “Improved large-signal model for vacuum
triodes,” in Circuits and Systems, 2009. ISCAS 2009. IEEE International
Symposium on, may 2009, pp. 3006 –3009.

[73] J. M. Miller, “Dependence of the input impedance of a three-electrode vacuum
tube upon the load in the plate circuit,” in Scientific Papers of the Bureau of
Standards, Washington, USA, Sept. 18–20, 1920, pp. 367–385.

[74] S. E. Zocholl, A. Guzman, and D. Hou, “Transformer modeling as applied
to differential protection,” Schweitzer Engineering Laboratories, Inc. Pullman,
Washington, Tech. Rep., 1999.

[75] E. Sarospataki and M. Kuczmann, “Realization of the jiles-atherton hysteresis
model applying the labview and matlab software package,” Electrical Engineering,
vol. 57, pp. 40–43, August 2006.

[76] C. Wong, “A dynamic hysteresis model,” IEEE Transactions on Magnetics,
vol. 24, pp. 1966–1968, MArch 1988.

[77] M. L. Hodgdon, “Applications of a theory of ferromagnetic hysteresis,” IEEE
Transactions on Magnetics, vol. 24, no. 1, pp. 218–221, January 1988.

176

[78] ——, “Mathematical theory and calculations of magnetic hysteresis curves,”
IEEE Transactions on Magnetics, vol. 24, no. 6, pp. 218–221, November 1988.

[79] S. R. Naidu, “Simulation of the hysteresis phenomenon using preisach’s theory,”
IEEE Proceedings, vol. 137, no. 2, pp. 73––79, March 1990.

[80] K. H. Carpenter, “A differential equation approach to minor loops in the jiles-
atherton hysteresis model,” IEEE Transactions on Magnetics, vol. 27, no. 6, pp.
4404–4406, November 1991.

[81] D. C. Jiles and D. L. Atherton, “Ferromagnetic hysteresis,” IEEE Transactions
on Magnetics, vol. 19, no. 5, pp. 2183–2185, 1983.

[82] P. Kis, “Jiles-atherton model implementation to edge finite element method,”
Ph.D. dissertation, Budapest University of Technology and Economics, 2010.

[83] D. C. Jiles, J. B. Thoelke, and M. K. Devine, “Numerical determination of
hysteresis parameters for the modeling of magnetic properties using the theory
of ferromagnetic hysteresis,” IEEE Transactions on Magnetics, vol. 28, no. 1,
pp. 27–35, 1992.

[84] D. C. Jiles and J. B. Thoelke, “Theory of feromagnetic hysteresis: Determination
of model parameters from experimental hysteresis loops,” IEEE Transactions
on Magnetics, vol. 25, no. 5, pp. 3928–3930, September 1989.

[85] Q. Chen, L. Xu, X. Ruan, S. C. Wong, and C. Tse, “Gyrator-capacitor simulation
model of nonlinear magnetic core,” in Applied Power Electronics Conference
and Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE, feb. 2009, pp.
1740 –1746.

[86] D. C. Hamill, “Gyrator-capacitor modeling: a better way of understanding mag-
netic components,” in Proceedings of the 9th Annual Applied Power Electronics
Conference and Exposition (APEC ’94), Feb. 1994, pp. 326––332.

[87] “Schematic Heaven,” 2000, [online], Available from http://www.webphix.com/
schematic20heaven/www.schematicheaven.com/index_HTML.html.

[88] L. J., Věrný zvuk, 1st ed. Praha: SNTL, 1962.

[89] Fender Music Instruments Corp., “Reissue 65 Deluxe Reverb Service Manual,”
1996.

[90] D. G. Manolakis and J. G. Proakis, Digital Signal Processing: Principles,
Algorithms and Applications, 3rd ed. Englewood Cliffs, NJ, USA: Prentice Hall,
1991.

177

[91] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in C, 2nd ed. Cambridge: Cambridge University Press, 1992.

[92] C. D. Boor, A Practical Guide to Splines, 1st ed. New York: Springer, 2001.

[93] R. Bartels, J. Beatty, and B. Barsky, An Introduction to Splines for Use in
Computer Graphics And Geometric Modeling, ser. Morgan Kaufmann Series in
Computer Graphics and Geometric Modeling. Morgan Kaufmann, 1995.

[94] Intel, “Intel® 64 and IA-32 Architectures Optimization Reference Manual,”
2009.

[95] Fender Music Instruments Corp., “Reissue 65 Super Reverb Service Manual,”
1996.

[96] R. Elliot, “Measuring Thiele / Small Loudspeaker Parameters,” 2007, available
at http://sound.westhost.com/tsp.htm.

[97] A. Melka, Základy experimentální psychoakustiky. Praha: Akademie múzických
umění v Praze, 2005.

[98] K. Dempwolf, M. Holters, and U. Zölzer, “A triode model for guitar amplifier
simulation with individual parameter fitting,” in Proceedings of the 131th AES
Convection, New York, USA, October 2011.

[99] O. Kröning, “Entwicklung eines systems zur automatisierten messung von elek-
tronenröhren,” Master’s thesis, Helmut-Schmidt-Universität, Hamburg, 2012.

[100] R. Zezula, “Objektivní a subjektivní metody vyhodnocování kval-
ity vodoznačných audio signálů.” Elektrorevue - Internet journal
(http://www.elektrorevue.cz), vol. 2008, no. 7, pp. 1–7, 2008.

[101] T. Heitel, “Využití psychoakustického modelu a tranformace typu wavelet
packet pro vodoznačení audio signálů.” Master’s thesis, Brno University of
Technology, Brno, 2010.

[102] N. Cvejic and S. T., Digital Audio Watermarking Techniques and Technologies
: Applications and Benchmarks, 1st ed. New York: IGI Global, 2007.

[103] J. Schimmel and J. Misurec, “Characteristics of broken-line approximation and
its use in distortion audio effects,” in Proc. Digital Audio Effects (DAFx-10),
Bordeaux, France, Sept. 10–15, 2007.

178

http://sound.westhost.com/tsp.htm

LIST OF APPENDICES

A Interpolation Techniques Comparison 180

B Implementation of Interpolation Formulas 182

C Incidence Matrices for Fender Type Preamp 184

D Incidence Matrices for Marshall Preamp 185

E Incidence Matrices for Marshall Preamp with the Decomposition 187

F K matrix for Marshall Preamp with the Decomposition 189

G Instructions for Listening Tests 190

H Answer Form for Listening Tests 192

I DVD content 195

179

A INTERPOLATION TECHNIQUES COMPAR-
ISON

• Linear interpolation – provides easy and efficient implementation but on
the other hand it provides only the 𝐶0 continuity. When it is used for the
approximation of a transfer function, it has similar properties as the piece-wise
linear transfer function which was investigated in [103]. The consequence of
the non-smooth behavior is the unlimited spectrum bandwidth and hence the
generation of aliasing distortion in the output signal. If sufficient number of
tabulated function values is used, aliasing distortion can have small values and
can be therefore masked. The linear interpolation is given by formula

𝑓(𝑥) = 𝐴𝑓(𝑥𝑖) + 𝐵𝑓(𝑥𝑖+1) (A.1)

where
𝐴 ≡ 𝑥𝑖+1 − 𝑥

𝑥𝑖+1 − 𝑥𝑖

(A.2)

and
𝐵 ≡ 1− 𝐴 = 𝑥− 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖

. (A.3)

• Local polynomial interpolation – According to the theorem about the
existence of the unique interpolation polynomial, every given set of nodes
𝑥1, 𝑥2, . . . , 𝑥𝑛 and function values 𝑓(𝑥1), 𝑓(𝑥2), . . . , 𝑓(𝑥𝑛) can be interpolated
using polynomial of degree 𝑛− 1. Therefore given four nodes 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2

in neigbourhood of a point 𝑥 can be interpolated by the cubic polynomial. The
efficient construction of this polynomial is provided by the Newton polynomial.
Coefficients are computed using divided differences defined by

𝑓 [𝑥𝑖, 𝑥𝑖+1] = 𝑓(𝑥𝑖+1)− 𝑓(𝑥𝑖+1)
𝑥𝑖+1 − 𝑥𝑖+1

(A.4)

according to

𝑎0 = 𝑓(𝑥𝑖1)
𝑎1 = 𝑓 [𝑥𝑖−1, 𝑥𝑖+1]
𝑎2 = 𝑓 [𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1]
𝑎3 = 𝑓 [𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2]

(A.5)

and the efficient polynomial evaluation is given by the nested multiplication

𝑓(𝑥) = ((𝑎3 (𝑥− 𝑥𝑖+1) + 𝑎2) (𝑥− 𝑥𝑖) + 𝑎1) (𝑥− 𝑥𝑖−1) + 𝑎0. (A.6)

This approximation provides more smooth behavior than the linear interpolation
but still only 𝐶0 class.

180

• Hermite cubic interpolation – was designed to achieve 𝐶1 continuity. Two
conditions have to be fulfilled in each node to get 𝐶1 continuity: 𝑃𝑖(𝑥𝑖+1) =
𝑃𝑖+1(𝑥𝑖+1) and 𝑃 ′

𝑖 (𝑥𝑖+1) = 𝑃 ′
𝑖+1(𝑥𝑖+1) where 𝑃 (𝑥) is the cubic polynomial in

form
𝑃𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥− 𝑥𝑖) + 𝑐𝑖(𝑥− 𝑥𝑖)2 + 𝑑𝑖(𝑥− 𝑥𝑖)3.

The polynomial coefficients are obtained from

𝑎𝑖 = 𝑓(𝑥𝑖) (A.7)
𝑏𝑖 = 𝑠𝑖 (A.8)

𝑐𝑖 = 3𝑓 [𝑥𝑖+1, 𝑥𝑖]− 2𝑠𝑖 − 𝑠𝑖+1

𝑥𝑖+1 − 𝑥𝑖

(A.9)

𝑑𝑖 = 𝑠𝑖 + 𝑠𝑖+1 − 2𝑓 [𝑥𝑖+1, 𝑥𝑖]
(𝑥𝑖+1 − 𝑥𝑖)2 (A.10)

where 𝑠𝑖 and 𝑠𝑖+1 are slopes in nodes 𝑥𝑖 and 𝑥𝑖+1 which can be computed e.g.
using finite differences.

• Cubic spline interpolation – is the piece-wise cubic polynomial interpolation
with the 𝐶2 continuity. To achieve 𝐶2 continuity, each node has to additionally
fulfill the condition 𝑃

(2)
𝑖 (𝑥𝑖+1) = 𝑃

(2)
𝑖+1(𝑥𝑖+1). In this case, the slopes 𝑠𝑖 have to

be computed from

(𝑥𝑖 − 𝑥𝑖−1)𝑠𝑖−1 + 2(𝑥𝑖+1 − 𝑥𝑖−1)𝑠𝑖 + (𝑥𝑖+1 − 𝑥𝑖)𝑠𝑖+1 =

=
(︃

𝑓(𝑥𝑖+1)− 𝑓(𝑥𝑖)
𝑥𝑖+1 − 𝑥𝑖

− 𝑓(𝑥𝑖)− 𝑓(𝑥𝑖−1)
𝑥𝑖 − 𝑥𝑖−1

)︃ (A.11)

for 𝑖 = 0, 1, . . . , 𝑁 − 1, which requires solving of the linear tridiagonal system
for each interpolation or the slopes 𝑠𝑖 have to be also stored in the look-up
table. If all spline coefficients 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖 are stored in the look-up table,
then the interpolation computation consists only from

𝑓(𝑥) = ((𝑑𝑖 (𝑥− 𝑥𝑖) + 𝑐𝑖) (𝑥− 𝑥𝑖) + 𝑏𝑖) (𝑥− 𝑥𝑖) + 𝑎𝑖 (A.12)

if the nested multiplication is used.
Another construction of the cubic spline interpolation introduced in [91] is
given be interpolation formula

𝑓(𝑥) = 𝐴𝑓(𝑥𝑖) + 𝐵𝑓(𝑥𝑖+1) + 𝐶𝑠𝑖 + 𝐷𝑠𝑖+1 (A.13)

where 𝐴, 𝐵 are given by (A.2), (A.2) and

𝐶 ≡ 1
6(𝐴3 − 𝐴)(𝑥𝑖+1 − 𝑥𝑖)2 (A.14)

and
𝐷 ≡ 1

6(𝐵3 −𝐵)(𝑥𝑖+1 − 𝑥𝑖)2. (A.15)

181

B IMPLEMENTATION OF INTERPOLATION
FORMULAS

Listing B.1 implements the linear interpolation given by (A.1).

Listing B.1: Linear interpolation
h = x_breaks [i +1] − x_breaks [i] ;
A = (x_breaks [i +1]−x)/h ;
B = 1 . f−A;
return A∗ fx [i] + B∗ fx [i +1] ;

The local polynomial interpolation which uses the Newton interpolation polynomial
(A.5), (A.6) is in listing B.2

Listing B.2: Local Newton polynomial interpolation
a0 = fx [i −1] ;
a1 = (fx [i]− fx [i −1])/(x_breaks [i]−x_breaks [i −1]) ;
tmp1 = (fx [i +1]− fx [i]) / (x_breaks [i +1]−x_breaks [i]) ;
tmp2 = (fx [i +2]− fx [i +1])/(x_breaks [i +2]−x_breaks [i +1]) ;
a2 = (tmp1−a1)/ (x_breaks [i +1]−x_breaks [i −1]) ;
tmp3 = (tmp2−tmp1)/(x_breaks [i +2]−x_breaks [i]) ;
a3 = (tmp3−a2)/ (x_breaks [i +2]−x_breaks [i −1]) ;
out = a3 ∗(x−x_breaks [i +1]) + a2 ;
out = out ∗(x−x_breaks [i]) + a1 ;
return out ∗(x−x_breaks [i −1]) + a0 ;

Listing B.3 implements the Hermite cubic interpolation given by (A.7), (A.8), (A.9)
and (A.10). Slopes are computed using finite differences and in the listing, they are
stored in variables D1 and D2.

Listing B.3: Hermite cubic interpolation
dx = x_breaks [i +1] − x_breaks [i] ;
d f = (fx [i +1]− fx [i]) / dx ;
D1 = (fx [i +1]− fx [i −1])/(x_breaks [i +1] − x_breaks [i −1]) ;
D2 = (fx [i +2]− fx [i]) / (x_breaks [i +2] − x_breaks [i]) ;
c = (3∗ df − 2∗D1 −D2)/ dx ;
d = (−2∗ df + D1 +D2)/(dx∗dx) ;
x = in − x_breaks [i] ;
out = d∗x+c ;
out = out∗x + D1 ;
return out∗x + fx [i] ;

Listing B.4 provides the implementation of the cubic spline evaluation (A.12). This
however requires the precomputation of spline coefficients, which are stored in vectors
a_vec, b_vec, c_vec and d_vec .

182

Listing B.4: Cubic spline interpolation 1
x = in − x_breaks [fx] ;
out = d_vec [i] ∗ x + c_vec [i] ;
out = out∗x + b_vec [i] ;
return out∗x + a_vec [i] ;

Implementation of the cubic spline defined in listing B.5 requires only precomputed
coefficients a_vec and c_vec. The remaining coefficients are computed during the
interpolation. The computational cost is therefore higher but on the other hand the
memory demands are lower.

Listing B.5: Cubic spline interpolation 2
h = x_breaks [i +1] − x_breaks [i] ;
dh = 1 ./ h ;
d = (c_vec [i +1] − c_vec [i]) ∗0 . 33333∗ dh ;
b = (fx [i +1] − fx [i]) ∗ dh − (2 . f ∗c_vec [i] + c_vec [i +1])∗h ∗0 . 33333 ;
x = in − x_breaks [i] ;
out = d_vec [i] ∗ x + c_vec [i] ;
out = out∗x + b_vec [i] ;
return out∗x + fx [i] ;

The last interpolation algorithm in listing B.6 implements the equation (A.13) and
also require precomputed function values and the second derivative in vector c_vec.

Listing B.6: Cubic spline interpolation 3
h = x_breaks [i +1] − x_breaks [i] ;
A = (x_breaks [i +1]− in)/h ;
B = 1 . f−A;
l i n = A∗ fx [i] + B∗ fx [i +1] ;
return l i n + ((A∗A∗A−A)∗ c_vec [i] + (B∗B∗B−B)∗ c_vec [i +1])∗(h∗h) / 6 . f ;

183

C INCIDENCE MATRICES FOR FENDER TYPE
PREAMP

𝑁r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑁x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑁n =

⎡⎢⎢⎢⎢⎢⎣
0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 −1 1 0

⎤⎥⎥⎥⎥⎥⎦

𝑁u =
⎡⎣ 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎦ ,

𝑁o =
[︁

0 0 0 0 0 0 0 0 0 0 0 1 0
]︁

𝐺r = diag
(︂ 1

𝑅1
,

1
𝑅2

,
1

𝑅3
,

1
𝑅4

,
1

𝑅5
,

1
𝑅6a

,
1

𝑅6b
,

1
𝑅7

,
1

𝑅8
,

1
𝑅9a

,
1

𝑅9b
,

1
𝑅10

,
1

𝑅11

)︂

𝐺r = 2
𝑇

diag (𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5) .

184

D INCIDENCE MATRICES FOR MARSHALL
PREAMP

𝑁r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑁x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑁n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑁u =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ ,

𝑁o =
[︁

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
]︁

185

𝐺r = diag
(︂ 1

𝑅1
,

1
𝑅2

,
1

𝑅3
,

1
𝑅4

,
1

𝑅5
,

1
𝑅6a

,
1

𝑅6b
,

1
𝑅7

,
1

𝑅8
,

1
𝑅9

,
1

𝑅10
,

1
𝑅11

,
1

𝑅12

)︂

𝐺r = 2
𝑇

diag (𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶m1, 𝐶m2, 𝐶m3) .

186

E INCIDENCE MATRICES FOR MARSHALL
PREAMP WITH THE DECOMPOSITION

𝑁r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

𝑁x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑁n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑁u =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ ,

187

𝑁o =
[︁

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
]︁

𝐺r = diag
(︂ 1

𝑅1
,

1
𝑅2

,
1

𝑅3
,

1
𝑅4

,
1

𝑅5
,

1
𝑅6a

,
1

𝑅6b
,

1
𝑅7

,
1

𝑅8
,

1
𝑅9

,
1

𝑅10
,

1
𝑅11

,
1

𝑅12

)︂

𝐺r = 2
𝑇

diag (𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝐶m1, 𝐶m2, 𝐶m3) .

188

F K MATRIX FOR MARSHALL PREAMP WITH
THE DECOMPOSITION

K
=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣6.
69
×

10
4

8.
17
×

10
2

0
0

0
0

8.
02
×

10
2

0
8.

17
×

10
2

5.
04
×

10
4

0
0

0
0

5.
04
×

10
4

0
0

0
8.

14
×

10
5

2.
88
×

10
4

0
0

−
8.

04
×

10
5

1.
88
×

10
4

0
0

2.
88
×

10
4

1.
08
×

10
5

0
0

−
1.

88
×

10
4

9.
81
×

10
4

0
0

0
0

4.
24
×

10
5

1.
07
×

10
4

0
−

4.
23
×

10
5

0
0

0
0

1.
07
×

10
4

9.
87
×

10
4

0
−

9.
92
×

10
3

8.
02
×

10
2

5.
04
×

10
4
−

8.
04
×

10
5
−

1.
88
×

10
4

0
0

8.
77
×

10
5
−

1.
88
×

10
4

0
0

1.
88
×

10
4

9.
81
×

10
4
−

4.
23
×

10
5
−

9.
92
×

10
3
−

1.
88
×

10
4

5.
43
×

10
5

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

189

G INSTRUCTIONS FOR LISTENING TESTS

Dear participants,
Hereby I would like to ask you to take part in the listening test. The aim of the

test is to determine the quality of the digital simulation of analog effects. Results of
this test will be used in my dissertation thesis. Results will be anonymous and you
do not have to be worried that your answers will be published. Evaluation of your
abilities is not intention of this test.

The listening test consists of several parts which can be divided by small breaks
if you need or want. The first part is focused on the determination of quality of the
guitar preamp Engl E530 simulation. The ABX listening test will be used. Three
sound samples will be available - one is measured, one is simulated (samples A and
B) and one is unknown (sample X). Your task is to determine whether the sample X
is the sample A or B. You can switch between all three samples during the playback
(it will be shown). There are 20 tests which are assembled randomly and which cover
different playing styles. 10 tests are focused on the simulation of the clean channel
of the preamp and 10 tests are focused on the simulation of the crunch channel of
the preamp. There is the prepared answer form for filling in the answers. Please fill
in the type of the sample (A or B) into the column Type. Focus only on the guitar
signal. If you are not sure with the answer, choose A or B randomly. Further fill
in how much it was difficult to distinguish the samples (1 to 5, one for easy and 5
for very difficult) and if you are satisfied with the simulation quality (1 to 5, 1 for
insufficient and 5 for sufficient). Do not go back to previous tests.

The second task is to determine if the simplified model of the output transformer
has an audible impact to the output signal. The ABX test will be used again.

The third task is the determination of the minimal number of data for the
approximation which are required without loosing the same audible perception.
Reduce the number of data using the slider until you can hear any difference between
the "Full" and "Reduced" variant (it will be shown). Write down into the answer
form the number of data points required for each type of the approximation.

The last task is to determine if there is a noticeable aliasing distortion in the
sound sample. The test consists of 5 differently distorted guitar riffs using the guitar
effect Distortion organized in 5 groups. Each group is denoted witch a different
letter. Each guitar riff from the given group is processed in such way that it consists
different amount of the aliasing distortion - number 1 contains the most of aliasing
distortion while number 8 less or none aliasing distortion. There is also the reference
sample without aliasing distortion to be compared with. Go through all numbers in
each group sequentially and determine if you can hear any difference between the
sample A and the reference sample B. As soon as you cannot hear the difference,

190

omit the samples with higher number and continue with the next group.
Please read these instructions carefully and in case of any doubts do not hesitate

to ask the experiment leader. Incomprehension of these instructions can lead to
wrong results which can devalue this test.

Thank you for your time and cooperation.

191

H ANSWER FORM FOR LISTENING TESTS

Clean channel

Experiment Type (A, B) Difficulty Quality
A1
A2
A3
A4
A5
A6
A7
A8
A8
A9
A10

Crunch channel

Experiment Type (A, B) Difficulty Quality
B1
B2
B3
B4
B5
B6
B7
B8
B8
B9
B10

Output Transformer Model

Experiment Type (A, B) Difficulty Quality
C1
C2
C3
C4
C5
C6
C7
C8
C8

192

Aliasing distortion

Experiment Match
D1
D2
D3
D4
D5
D6
D7
D8
D8
E1
E2
E3
E4
E5
E6
E7
E8
E8
F1
F2
F3
F4
F5
F6
F7
F8
F8
G1
G2
G3
G4
G5
G6
G7
G8
G8
H1
H2
H3
H4
H5
H6
H7
H8
H8

193

Approximation parameters

Type Number of points
Spline 1
Spline 2
Hermite
Newton
Linear

194

I DVD CONTENT

• Matlab – organized according to chapters of the thesis. Each folder contains
the README.txt file with a brief description of all files.

– common – contains functions which are shared by more chapters,
– chapter 3 – functions and scripts with simulations of transformers and

operational amplifiers,
– chapter 4 – functions and scripts for approximation of functions,
– chapter 5 – simulations of more complex systems,
– chapter 6 – functions and scripts for the evaluation of quality of simulation.

• Listening test files
– source wave files which were used for the listening test,
– VST plug-in effects used in software cubase during the listening test,
– documents used for the listening test.

• Applications – demo version of commercial product AmpLion which use
algorithms designed in this thesis.

195

Curriculum Vitae
Jaromír Mačák

Tel: (+420) 777 297 164
Email: jarda.macak@seznam.cz

Personal information

• Born on 4th October, 1983.
• Czech nationality

Education

• Brno University of Technology, Faculty of Electrical Engineering and Commu-
nication, Czech Republic, doctoral degree programme, 09/2008 – 10/2012

• Helmut Schmidt University - University of the Federal Armed Forces Hamburg,
Department of Electrical Engineering, Hamburg, Germany, 02/2012 – 05/2012

– research stay
• Brno University of Technology, Faculty of Electrical Engineering and Commu-

nication, Czech Republic, master’s degree programme, 09/2006 – 06/2008
– final state exam with honours

• Brno University of Technology, Faculty of Electrical Engineering and Commu-
nication, Czech Republic, bachelor’s degree programme, 09/2003 – 09/2006

– final state exam with honours
• Gymnázium Lipník nad Bečvou, 09/1995 – 06/2003

– final exam with honours

Employment

• Brno University of Technology, Department of Telecommunication, Brno,
08/2009 – 05/2012

– assistant on project CZ.1.07/2.3.00/09.0222
• Janáček Academy of Music and Performing Arts in Brno (JAMU in Brno),

Brno, 01/2010 – 08/2012
– specialized assistant and lecturer in field of audio effects and instruments

design
• Disk Multimedia, spol. s r.o., Boskovice, 01/2006 – 10/2012, software developer

– DSP algorithm design

196

mailto:jarda.macak@seznam.cz

∗ digital simulation of Gallien-Krueger bass amplifiers
http://www.audiffex.com/EN/gallien.html,

∗ digital simulation of TC Electronic vintage guitar pedals
http://www.tcelectronic.com/vintageguitarpedalbundle.asp,

∗ digital simulation of analog guitar amplifiers and effects – ampLion
http://www.audiffex.com/EN/amplion.html,

∗ audio effects for TC Powercore system – inValve
http://www.audiffex.com/EN/invalve.html,

– audio plug-in development
– team-leader of audio effects development
– GUI development

Participation in Projects

• CZ.1.07/2.3.00/09.0222 – Educational Center for Increasing the Interest of
Young People in Research into Information and Communication Technologies.
Holder: Ing. Kubánek. 2009–2012

• FR-TI1/495 – Manifold System for Multimedia Digital Signal Processing.
Holder: Ing. Schimmel. 2009–2012

• 2704/G1/2011 – Extension of Laboratory Assignments Addressing Audio Effect
Measurement. Holder: Ing. Mačák. 2011

• FEKT-S-11-17 – Research of Sophisticated Methods for Digital Audio and
Image Signal Processing. Holder: Prof. Z. Smékal. 2011

• MSM21630513 – Electronic Communication Systems and Technologies of Novel
Generations (ELKOM). Holders: Prof. Z. Raida, Prof. K. Vrba, Prof. J. Jan.
2008–2011

• 2912/G1/2010 – Innovation of Laboratory Assignments of Subject Electroa-
coustics. Holder: Ing. Mačák. 2010

• FEKT-S-10-16 – Research on Electronic Communication Systems. Holder:
Prof. K. Vrba. 2010

• FT-TA3/010 – Spatial Effects for Multichannel Digital Signal Processing
Systems. Holder: Ing. Schimmel. 2009.

Invited Talks

• Simulation of analog audio devices in real-time. Audio Engineering Society,
Prague 1/12/2010.

197

http://www.audiffex.com/EN/gallien.html
http://www.tcelectronic.com/vintageguitarpedalbundle.asp
http://www.audiffex.com/EN/amplion.html
http://www.audiffex.com/EN/invalve.html

• Real-time digital simulation of analog audio effects, SPLab Workshop 2011,
Brno 28/10/2011.

Results

• Publications: 13
– In international journals with Impact Factor: 1
– In proceedings of international conferences: 6
– In other journals: 4
– In other conferences: 2

• Software/Products: 1
• Citations (without self-citations): 8
• h-index according to Web of Science: 1
• responses to publications from foreign experts: 3

Awards

• EEICT 2008 student conference and competition – 3rd prize
• EEICT 2090 student conference and competition – 1sd prize

198

	List of abbreviations
	List of symbols and math operations
	Introduction
	State of the Art
	Introduction
	Algorithms Overview
	Nodal Analysis Simulation Techniques
	Numerical Integration of Nonlinear Ordinary Differential Equations
	Simulation by Static Waveshaping and Digital Filter Design
	State Space Based Approach
	Nonlinear Wave Digital Filters
	Volterra Series

	Recent Advances
	Advances in State-Space Modeling
	State-Space Approach for Parametric Circuits

	Basic Circuit Component Models for Real-time Audio Effect Simulation
	Discretized Models of Capacitor and Inductor
	Diode Model
	Transistor Model
	Tube Models
	Transformer Core Models

	Goals of Thesis
	Circuit Analysis of Audio Effects
	Simulation of Circuits with Audio Transformer
	Transformer Model
	Basic Input Stage with Transformer
	Push-Pull Tube Amplifier
	Automated Incorporation of Transformer Model into DK-method

	Simulation of Circuits with Operational Amplifier
	Incorporation of Operational Amplifier Model into Automated DK-method

	Further Considerations Regarding DK-Method
	Summary

	Approximation of Implicit Nonlinear Circuit Equations
	Precomputation of Nonlinear Systems
	Precomputation for approximation of nonlinear ODEs
	Precomputation for approximation of the state-space nonlinearity

	Brief Overview of Function Approximation Techniques
	Implementation and comparison of approximation of 1-D function
	Non-uniform Grid Interpolation

	Approximation of N-D function
	Non-uniform grid interpolation
	Parallel evaluation of interpolations

	Customized approximation of transfer function
	Reshaping of transfer function

	Summary

	Complex System Simulation
	Modified Block-Wise Method
	Guitar Tube Amplifier Simulation as a Case Study for Modified Block-wise Method
	Computational Complexity
	Simulation Results

	Decomposition of the DK-method nonlinear core
	Precomputation
	Further Look-up Table Size Reduction
	Simulation Results

	DK-model Decomposition Using Connection Components
	Simulation of Circuit with Global Feedback
	Summary

	Quality of Simulation of Audio Effect Circuits
	Simulation of the Guitar Tube Preamp Engl E530
	Subjective evaluation of guitar tube preamp simulation
	Results

	Subjective Comparison of Interpolation Techniques
	Subjective Comparison of Output Transformer Model
	Audible Aliasing Distortion
	Summary

	Conclusion
	Author's Publications
	Bibliography
	List of appendices
	Interpolation Techniques Comparison
	Implementation of Interpolation Formulas
	Incidence Matrices for Fender Type Preamp
	Incidence Matrices for Marshall Preamp
	Incidence Matrices for Marshall Preamp with the Decomposition
	K matrix for Marshall Preamp with the Decomposition
	Instructions for Listening Tests
	Answer Form for Listening Tests
	DVD content

