Branch Details

Design and Process Engineering

FSIAbbreviation: D-KPIAcad. year: 2015/2016Specialisation: Aircraft Design and Air Transport

Programme: Machines and Equipment

Length of Study: 4 years

Accredited from: Accredited until: 31.12.2020

Profile

Design and Process Engineering
· Designing, construction, calculation, technology of manufacturing, technical preparation of manufacturing including assembly and testing,
· Thermal and nuclear power plant devices such as steam and combustion turbines, steam generators, steam power plants and heating plants including nuclear power stations, industrial power engineering and their environmental aspects,
· Water turbines, hydrodynamic and hydrostatic pumps, piping systems, hydroelectric power plants, and pumping stations,
· Machinary and devices for chemical industry, food-stuff industry, and biotechnological treatment lines,
· Construction, modelling and theoretical studies of machines and devices for cutting, forming machines, industrial robots, and manipulators,
· Machine parts and mechanisms, methodology of designing machine elements and working mechanisms of general application with consideration of stochastic qualities of inputs, including the application of special types of machines and devices,
· Cars, vans and lorries, buses, trailers, semi-trailers, and motorcycles,
· Combustion engines for all types of vehicle drives, simulation of combustion engine thermomechanical systems, dynamics of driving gear, engine accessories, ecology,
· Machines and devices for in-plant handling of material and handling between operations, for the mining and transport of building materials, for passenger conveyance in buildings,
· Aerodynamic calculation and designing, flight mechanics, fatigue and durability of aircraft constructions, aeroelasticity of aircraft,
· Quality of machine industry production.

Guarantor

Issued topics of Doctoral Study Program

  1. Bionics in aircraft design

    The most progressive technical solutions are inspired by nature and natural structures. The knowledge in the area of natural sciences in combination with development of new materials, technologies and computational systems enable today to transfer inspiration from natural patterns into complete technical products. The goal of this work is to creatively combined knowledge from biology with progressive engineering technologies and with up to date computational methods in the way that the aircraft primary structure will be designed with optimal distribution of weight frm the aspect of its loading. The main befit will be significant decrease of structural weight. Theoretical part of the work will be aimed at identification of promissing natural patterns and selection of aircraft parts on which those patterns could be applied. Practical output of work will be development of aircraft structure by application of bionics, up to date computational methods and new alloys and by application of progressive technologies such as Additive Layer Manufacturing.

    Tutor: Klement Josef, doc. Ing., CSc.


Course structure diagram with ECTS credits

Study plan wasn't generated yet for this year.