Branch Details

Mathematics in Electrical Engineering

FEKTAbbreviation: PKA-MVEAcad. year: 2015/2016

Programme: Electrical Engineering and Communication

Length of Study: 4 years

Accredited from: 25.7.2007Accredited until: 31.12.2020

Profile

The postgraduate study programme aims at preparing top scientific and research specialists in various areas of mathematics with applications in electrical engineering fields of study, especially in the area of stochastic processes, design of optimization and statistic methods for description of the systems studied, analysis of systems and multisystems using discrete and functional equations, digital topology application, AI mathematical background, transformation and representation of multistructures modelling automated processes, fuzzy preference structures application, multicriterial optimization, research into automata and multiautomata seen in the framework of discrete systems, stability and system controllability. The study programme will also focus on developing theoretical background of the above mentioned areas of mathematics.

Key learning outcomes

The graduates of the postgraduate study programme Mathematics in Electrical Engineering will be prepared for future employment in the area of applied research and in technology research teams. Due to the comprehensive use of computer engineering throughout the study programme, the graduates will be well prepared for work in the area of scientific and technology software development and maintenance. The graduates will also be prepared for management and analytical positions in companies requiring good knowledge of mathematical modelling, statistics and optimization.

Occupational profiles of graduates with examples

The graduates of the postgraduate study programme Mathematics in Electrical Engineering will be prepared for future employment in the area of applied research and in technology research teams. Due to the comprehensive use of computer engineering throughout the study programme, the graduates will be well prepared for work in the area of scientific and technology software development and maintenance. The graduates will also be prepared for management and analytical positions in companies requiring good knowledge of mathematical modelling, statistics and optimization.

Guarantor

Issued topics of Doctoral Study Program

  1. Semianalytical solution methods for fractional functional differential equations

    The aim of the doctoral thesis is to propose modifications of advanced semianalytical solution methods as, for example, the differential transformation method or homotopy perturbation methods for solving of initial value problems and boundary problems of fractional functional differential equations including partial differential equations with applications in control theory.

    Tutor: Šmarda Zdeněk, doc. RNDr., CSc.

  2. Topological methods and properties in mathematical information and causal structures

    The dissertation will be focused on the study and development of certain suitable topological methods for the work with the mathematical structures, carrying some information.The research will be concentrated especially on the properties and the relationships of causal character. Possible applications are, among others, e.g. in computer science (concurrent and parallel processes), cybernetics, quantum information theory and physics (some aspects of general relativity versus quantum gravity).

    Tutor: Kovár Martin, doc. RNDr., Ph.D.


Course structure diagram with ECTS credits

1. year of study, winter semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DBM1AAdvanced methods of processing and analysis of imagesen4Optional specializedDrExS - 39yes
DTK2AApplied cryptographyen4Optional specializedDrExS - 39yes
DET1AElectrotechnical materials, material systems and production processesen4Optional specializedDrExS - 39yes
DFY1AJunctions and nanostructuresen4Optional specializedDrExS - 39yes
DEE1AMathematical Modelling of Electrical Power Systemsen4Optional specializedDrExS - 39yes
DME1AMicroelectronic Systemsen4Optional specializedDrExS - 39yes
DRE1AModern electronic circuit designen4Optional specializedDrExS - 39yes
DAM1ASelected chaps from automatic controlen4Optional specializedDrExS - 39yes
DVE1ASelected problems from power electronics and electrical drivesen4Optional specializedDrExS - 39yes
DTE1ASpecial Measuring Methodsen4Optional specializedDrExS - 39yes
DJA6AEnglish for post-graduatescs4General knowledgeDrExCj - 26yes
DMA1AStatistics, Stochastic Processes, Operations Researchen4General knowledgeDrExS - 39yes
1. year of study, summer semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DME2AMicroelectronic technologiesen4Optional specializedDrExS - 39yes
DRE2AModern digital wireless communicationen4Optional specializedDrExS - 39yes
DTK1AModern network technologiesen4Optional specializedDrExS - 39yes
DTE2ANumerical Computations with Partial Differential Equationsen4Optional specializedDrExS - 39yes
DET2ASelected diagnostic methods, reliability and qualityen4Optional specializedDrExS - 39yes
DAM2ASelected chaps from measuring techniquesen4Optional specializedDrExS - 39yes
DBM2ASelected problems of biomedical engineeringen4Optional specializedDrExS - 39yes
DEE2ASelected problems of electricity productionen4Optional specializedDrExS - 39yes
DFY2ASpectroscopic methods for non-destructive diagnostics en4Optional specializedDrExS - 39yes
DVE2ATopical Issues of Electrical Machines and Apparatusen4Optional specializedDrExS - 39yes
DMA2ADiscrete Processes in Electrical Engineeringen4General knowledgeDrExS - 39yes
1. year of study, both semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DQJAAEnglish for the state doctoral examcs4CompulsoryDrExyes