Branch Details

Teleinformatics

FEKTAbbreviation: PPA-TLIAcad. year: 2015/2016

Programme: Electrical Engineering and Communication

Length of Study: 4 years

Accredited from: 25.7.2007Accredited until: 31.12.2020

Profile

The aim of the studies is to prepare top-class scientific personalities that will be able to provide solution to challenging problems of science and technology in the field of information technologies in telecommunications. Another aim is to teach graduates the methods of scientific work, to make their knowledge of higher mathematics and physics more profound, and to furnish students with theoretical, experimental and practical knowledge from the field of teleinformatics.

Key learning outcomes

Graduates of doctoral studies in the field of teleinformatics are fit to work as scientific and research workers in the development, design and operation departments of research and development institutes, and telecommunications companies, where they can make full creative use of their knowledge and skills.
The graduate is capable of solving independently sophisticated problems of science and technology in the field of teleinformatics.
In view of the scope of his theoretical education the graduate is capable of adapting to practice requirements in both fundamental and applied research.

Occupational profiles of graduates with examples

This field of study focuses on the science education of doctoral students with profound theoretical foundations in converging communication and in formation technologies. The main part of the study includes course in theoretical informatics and telecommunication technology. In the area of teleinformatics the student has much knowledge of communication and information technologies, data transmissions and their security, inclusive of using and designing the related software. He is well versed in operating systems, computer languages, database systems, distributed applications and the like. He can cope with the algorithmization of tasks on a high level and can propose new technological solutions of telecommunication devices, information systems and support services.

Guarantor

Issued topics of Doctoral Study Program

  1. Box Particle Techniques

    The particle filter is a computationally feasible technique for sequential Bayesian estimation in arbitrary nonlinear/non-Gaussian scenarios. The box particle filter is a recent variant of the particle filter with significantly reduced complexity. The goal of this thesis is to develop a distributed version of the box particle filter, and to investigate the application of box particle techniques to belief propagation message passing and/or to Bayesian filters based on random finite sets, such as the PHD filter or the multi-Bernoulli filter.

    Tutor: Říha Kamil, doc. Ing., Ph.D.

  2. Cloud services in Internet

    Cloud services are a modern technology that, for example, allows data storage on the Internet without restriction to a specific server. With distributed systems, a number issues are to be solved, such as the server distribution for the data storage, backuping and restoring the data, users' privacy assurance, scalability, and data availability.

    Tutor: Komosný Dan, prof. Ing., Ph.D.

  3. Completing missing samples in audio using modern techniques

    The need to complete the missing segment of an audio signal is an interesting task with the practical use (restoration of recordings, dropouts in VoIP calls, etc.). Current methods are capable of high quality interpolation of signals that are stationary in the vicinity of the missing section and have harmonic character. The study would focus on improving these methods by advanced signal processing approaches. Psyhcoacoustic viewpoint of the problem should be covered as well. Cooperation with the academy of Sciences Vienna.

    Tutor: Rajmic Pavel, prof. Mgr., Ph.D.

  4. Controlled Sensing for Distributed Localization in Agent Networks

    In location-aware scenarios, agents determine their own positions (self-localization) and possibly the positions of other objects (target tracking). In active localization methods, the transmitted waveform has a strong effect on the localization performance, especially in the presence of multipath. The goal of this thesis is to adapt the transmitted waveform using an “information-seeking” control scheme, such that the relevant information carried by the measurements of all the agents is maximized.

    Tutor: Koton Jaroslav, prof. Ing., Ph.D.

  5. Converters for mutual A/D and D/A conversions working in the current mode

    The work is focused on the design of A/D and D/A converters working in the current mode. The aim is to design a suitable structure of number-current and current-number converters without internal current-voltage and voltage-current conversions with respect to enhancing the bandwidth in comparison with converters working in the voltage mode. Part of the work is also the design and analysis of current-mode antialiasing filters. The design will start from unconventional circuit element structures such as current conveyors (CCI, CCII, CCIII) with simple or floating output, current feedback amplifiers (CFA) or transconductance amplifiers (OTA, BOTA, DBTA). Requirements to be met by the candidate: the knowledge of circuit theory and simulation programs (MicroCap, PSpice).

    Tutor: Lattenberg Ivo, doc. Ing., Ph.D.

  6. Design of distributed systems protection

    The aim is to analyse the aspects of protection in a frame of distributed systems and their algorithms with an emphasis on a potential safety risk. The design and optimization of new protection techniques for these systems is expected on the basis of obtained observation. Optimization involves the proposals of both mechanisms to improve the distributed systems and the procedures to either minimize or prevent the negatives effects affecting the functions of such is expected to propose the mathematical tools to describe the novel mechanisms. It is supposed to simulate or experimentally verify the functionality of the proposed solutions.

    Tutor: Škorpil Vladislav, doc. Ing., CSc.

  7. Design of high-frequency symmetrical frequency-agile filters

    This thesis is focused on research of new concepts of high-frequency frequency-agile filters using non-conventional analog functions blocks. Frequency-agile filters are special type of reconfigurable filters that have property for agility. The aim of this work is the design of symmetrical class 1 to class n frequency-agile filters. The workability of proposed circuits will be proved by SPICE simulations and via experiments.

    Tutor: Herencsár Norbert, doc. Ing., Ph.D.

  8. Environmental Noise Monitoring and Assessment

    Environmental noise is a worldwide problem that persists even in areas where extensive resources have been used for regulating, assessing and damping noise sources or for creation of noise barriers. Environmental noise protection requires making measurements in the field, assessing noise from specific sources, calculating expected noise levels, and mapping noise levels. The aim of this doctoral thesis is research of a new concept of permanent monitoring and assessment of environmental noise with identification of the noise sources and interactive mapping that uses modern wireless sensor networks with real-time monitoring and data visualization. The thesis topics comprise research and implementation of the noise analysis algorithms and design of a noise sensor hardware as well.

    Tutor: Schimmel Jiří, doc. Ing., Ph.D.

  9. Feature analysis of current-mode electronic frequency filters

    The work is focused on the feature analysis of current-mode electronic frequency filters. The aim is to design algoritmizable methods that lead to finding features of filters generally defined by the schematic. It will be necessary to evaluate the available feature ranges, e.g. quality, pass-band current transfer, dynamic range within a defined supply voltage, sensitivity, etc. In the case of finding the quality range, the point is to find the extremes of a multi-variable non-linear function. Mathematical tools (e.g. Maple or MathCAD) will first be used for this purpose; afterwards the algorithm itself will be designed. Requirements to be met by the candidate: algorithm thinking, the knowledge of computer programming and circuit theory.

    Tutor: Lattenberg Ivo, doc. Ing., Ph.D.

  10. Internet Cybersecurity

    Cybersecurity is important for the privacy assurance of the Internet users, while attackers try to gather as much information as possible and use it against them. One of the possible solutions is to prevent cyber attacks by monitoring the network communication and analysing the data captured.

    Tutor: Komosný Dan, prof. Ing., Ph.D.

  11. Internet for emergency services

    Nowadays, the use of the public Internet is limited for communication with emergency services, such us police and emergency medical service. The reason is that the current networking technologies for emergency communication including voice/video/text transmission do not have the properties and parameters required. An example is detection of the geographical location of a caller in emergency.

    Tutor: Komosný Dan, prof. Ing., Ph.D.

  12. Internet of Things

    Internet of Things (IoT) is a new trend covering interconnection of the different types of devices using the Internet. For such devices, new ways of network communication are needed. The basic applications of IoT are environmental monitoring, medical systems, smart homes, and transportation of people and goods.

    Tutor: Komosný Dan, prof. Ing., Ph.D.

  13. Interoperability and secure data sharing between the components of Internet of Things ecosystem

    In order to fully realize the vision of the Internet of Things (IoT), devices and apps need a common way to interact and speak to each other. Therefore, it is really important to create universal platform which will act as an interconnecting element for different vendor-, programming language- and communication technology-independent components of IoT ecosystem. The main goal of the doctoral thesis is to propose and develop the multi-platform middleware which will be implemented on an intelligent IoT gateway to provide common services and interfaces for secure communication, data sharing and control functions for IoT applications, sensor and actuators. One of the key tasks is to propose an open smart object data model and universal syntax to enable the information sharing between devices and sensors.

    Tutor: Hošek Jiří, doc. Ing., Ph.D.

  14. Novel concepts of analog functional blocks with voltage differencing input

    The thesis is focused on research of novel types of analog functional blocks with voltage differencing input and their utilization in frequency filters, oscillators, synthetic inductors, etc. The aim is to design novel types of functional blocks with voltage differencing input that allow electronical tuning of current or voltage gains between terminals. The workability of proposed circuits will be proved by SPICE simulations and via experiments.

    Tutor: Herencsár Norbert, doc. Ing., Ph.D.

  15. Novel methods of biological signals extraction from medical images

    The theme is focused on processing of static, dynamic or three-dimensional images produced by different medical acquisition techniques, namely the output of the sonographic examination, body slices acquisition using the magnetic resonance etc. The goal is to improve properties of single images, their segmentation, 2D object recognition, quantification of different object parameters, their dynamic or spatial analysis, or eventual 3D model reconstruction. The main result of the work will be a proposal of a novel method being utilizable for solving of concrete diagnostic problems in cooperation with doctors.

    Tutor: Říha Kamil, doc. Ing., Ph.D.

  16. Novel methods of incomplete spatial information analysis in digital images

    The theme is focused on the research of novel methods for analysis of incomplete spatial information captured in digital images. These source data can be represented by temporal or spatial sequences eventually by a single image whereas the analysis should result from a given scene geometry.

    Tutor: Říha Kamil, doc. Ing., Ph.D.

  17. Object-Based Audio Processing

    In an object-based audio system, the different sound elements are bundled with metadata to form audio objects. This metadata then describes how the sound element should be reproduced to the listener, by defining its position in the 3D field, regardless the sound reinforcement system. Currently there are a number of approaches for positioning the audio objects, particularly ambisonics, VBAP, DirAC, and wavefield synthesis. Each of them has its advantages and disadvantages. The aim of this doctoral thesis is to analyze the possibilities of using these methods in real installations and to design and test new algorithms for positioning audio objects in 3D space.

    Tutor: Schimmel Jiří, doc. Ing., Ph.D.

  18. Operating systems for dedicated devices

    Nowadays, the classic operating systems are ported on dedicated devices that usually have restricted resources or one system function is preferred to the others. One of the commonly used systems for this purpose is OS Linux. A number of Linux optimization project exits, such as to minimize the operating system size or to increase performance for specific real-time applications.

    Tutor: Komosný Dan, prof. Ing., Ph.D.

  19. Peer-to-peer networks

    Peer-to-peer networks are commonly used for data sharing among a large number of the Internet users. These networks have some issues, such as the optimal logical structure of the communicating nodes or assurance of constant data availability. An example application and protocol for data sharing is BitTorrent.

    Tutor: Komosný Dan, prof. Ing., Ph.D.

  20. Research and optimization of analog circuit structures using parasitic effects of transistors

    The thesis is focused on research and optimization of MOS-only analog circuit structures (frequency filters, oscillators, immittance converters, etc.). The aim of this work is to design a low-voltage and low-power applications by advantageous usage of influences of transistor parasitics that work in frequency range tens of MHz. The workability of proposed circuits will be proved by SPICE simulations and via experiments.

    Tutor: Herencsár Norbert, doc. Ing., Ph.D.

  21. Research of novel chemical active function blocks

    The dissertation is focused on research of novel structures of non-conventional chemical active function blocks such as current and voltage conveyors. The aim of this work is to design novel structures of chemical current and voltage conveyors of first-, second-, and third-generation or with voltage or current differencing inputs and their utilization in measurement systems for sensing basic quantities in biomedical systems.

    Tutor: Herencsár Norbert, doc. Ing., Ph.D.

  22. Security in converged networks

    The aim is to analyse the up-to-date development and trends in the area of converged networks, mainly the problems of protection against cybernetic attacks. The areas of 5G mobile, SDN and consequential transmission technologies are seemed to be among the advanced possibilities. The design of innovative or new protection methods is supposed to be on the basis of obtained observation. Research requires a summary of networks area, practice with MATALB or SCILAB programs, or knowledge of at least one of VHDL, C or Java languages, system FPGA, evolutionary algorithms, etc.

    Tutor: Škorpil Vladislav, doc. Ing., CSc.

  23. Spatiotemporal Room Analysis

    The spatiotemporal visualization method display the cumulative development of the sound field as a function of direction by forward-integrating the energy in the impulse response in short time frames. The motivation for the approach is the presentation of spatial sound field of listening rooms in format that enables quick comparison between rooms and emphasizes subjectively important aspects of the room.The aim of this work is to find new objective metrics using the spatiotemporal analysis and compare them with the subjective assessment of the quality of the listening room.

    Tutor: Schimmel Jiří, doc. Ing., Ph.D.

  24. Utilization of RC Elements with Distributed Parameters in Electrical Circuits, Fractal Circuits

    The topic aims at the research into utilization of resistive-capacitive elements with distributed parameters (RC-EDP) in electrical circuits especially with modern active elements (conveyors, current amplifiers etc.). In particular it will include design of so-called fractal circuits which have non-integer order of transfer or immittance function and which can be implemented by RC-EDP. It is expected proposing new frequency filters, oscillators, synthetic immittance elements and other circuits. The aim will be improving properties compared to existing circuits (reducing dimensions, increasing response speed, decreasing power consumption etc.) and moreover obtaining characteristics that cannot be realized by classical elements or only at the cost of using complex structures.

    Tutor: Kubánek David, doc. Ing., Ph.D.

  25. Virtualization of operating systems

    Operating system virtualization is a modern trend when providing services on the Internet, especially in data centres. Despite the major advantages of virtualization, some problems are still to be solved, such as a performance reduction when providing networking services. Another problem is networking security and its implementation.

    Tutor: Komosný Dan, prof. Ing., Ph.D.


Course structure diagram with ECTS credits

1. year of study, winter semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DBM1AAdvanced methods of processing and analysis of imagesen4Optional specializedDrExS - 39yes
DTK2AApplied cryptographyen4Optional specializedDrExS - 39yes
DET1AElectrotechnical materials, material systems and production processesen4Optional specializedDrExS - 39yes
DFY1AJunctions and nanostructuresen4Optional specializedDrExS - 39yes
DEE1AMathematical Modelling of Electrical Power Systemsen4Optional specializedDrExS - 39yes
DME1AMicroelectronic Systemsen4Optional specializedDrExS - 39yes
DRE1AModern electronic circuit designen4Optional specializedDrExS - 39yes
DAM1ASelected chaps from automatic controlen4Optional specializedDrExS - 39yes
DVE1ASelected problems from power electronics and electrical drivesen4Optional specializedDrExS - 39yes
DTE1ASpecial Measuring Methodsen4Optional specializedDrExS - 39yes
DJA6AEnglish for post-graduatescs4General knowledgeDrExCj - 26yes
DMA1AStatistics, Stochastic Processes, Operations Researchen4General knowledgeDrExS - 39yes
1. year of study, summer semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DME2AMicroelectronic technologiesen4Optional specializedDrExS - 39yes
DRE2AModern digital wireless communicationen4Optional specializedDrExS - 39yes
DTK1AModern network technologiesen4Optional specializedDrExS - 39yes
DTE2ANumerical Computations with Partial Differential Equationsen4Optional specializedDrExS - 39yes
DET2ASelected diagnostic methods, reliability and qualityen4Optional specializedDrExS - 39yes
DAM2ASelected chaps from measuring techniquesen4Optional specializedDrExS - 39yes
DBM2ASelected problems of biomedical engineeringen4Optional specializedDrExS - 39yes
DEE2ASelected problems of electricity productionen4Optional specializedDrExS - 39yes
DFY2ASpectroscopic methods for non-destructive diagnostics en4Optional specializedDrExS - 39yes
DVE2ATopical Issues of Electrical Machines and Apparatusen4Optional specializedDrExS - 39yes
DMA2ADiscrete Processes in Electrical Engineeringen4General knowledgeDrExS - 39yes
1. year of study, both semester
AbbreviationTitleL.Cr.Com.Compl.Hr. rangeGr.Op.
DQJAAEnglish for the state doctoral examcs4CompulsoryDrExyes