Course detail

Theory of Measurement and Control

FAST-CW01Acad. year: 2015/2016

Summary of both theoretical and practical knowledge of acquiring process information. Knowledge necessary for preparation, projection, practice and for professional communication in this branch. An integral part is also appropriate mathematical apparatus necessary for orientation in this branch. Getting acquainted with principles of the measurement theory, with measuring chains, possibility of computer utilization for acquiring and subsequent processing of information as well as experimental measurements in technology processes, with industrial interference and elimination of its negative impacts.

Language of instruction

Czech

Number of ECTS credits

4

Mode of study

Not applicable.

Department

Institute of Technology, Mechanisation and Construction Management (TST)

Learning outcomes of the course unit

By mastering the objectives of the Theory of Measurement and Regulation course the students acquire fundamental knowledge of the theory and practice of measurement and instrumentation. They will become acquainted with rules governing configuration of measurement chains and physical principles of sensors; further on with fundamentals of regulation and control of technology processes and lines. The output is also knowledge of principles and causes of industrial interference.

Prerequisites

Fundamental information about measurement and automatic control on level at the high school physics and university physics.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Not applicable.

Course curriculum

1. Basic theory of the measurement and principles of measurement of physical values. Terminology.
2. - 3. Control theory. Linear, non-linear and extremal systems. Systems with fuzzy logic and common sense logics. Mathematical solutions. Modelling and simulations.
4. Information theory. Data for the information and measurement . Accuracy and correctness of the acquired information. Division of sensors.
5. Measurement etalons. Calibration. Mistakes. Static, dynamic and transfer characteristics. Sensors reliability and intelligence. Reliability and intelligence of sensors.
6. Resistance, capacity and piezoelectric sensors. Sensors with Hall effect.
7. Inductance, induction and magnetic sensors.
8. Camera sensors. Optoelectronics sensors. Semiconductor and microelectronic sensors.
9. Tensiometric sensors and tensiometric measurements. Photoelasticimetry. Vibrations and acceleration measurement. Measurement of vibrations and acceleration.
10. Measuring of flow rate, speed, distance, volume, level and electrical quantities. Materials analysis. Conversion of non-electric values to electrical.
11. - 13. Measuring chains. Use of computer technology. Technology of computer applications. Connection systems and their protocols. SW tools for measurement. Elements for controls for the technological process. Industrial interference and its consequences, limitation of its influence.

Work placements

Not applicable.

Aims

Making the students acquainted with fundamentals of measurement, control and systems theory. Measurement chains as system complexes and their elements. Using of computer utilization for acquisition and processing of obtained information. Control and monitoring of the production line. Industrial interference and elimination of these negative impacts.

Specification of controlled education, way of implementation and compensation for absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Matyáš, V., Zehnula, K., Pala, J: Měřicí technika. SNTL Praha, 1983. (CS)
Čtvrtník, V.: Elektronické měřicí systémy I. a II, skripta. VŠSE Plzeň, 1991. (CS)
Beran, Vl.: Měření neelektrických veličin,. ZČU Plzeň, 1993. (CS)
Ďaďo, S., Kreidl, M.: Senzory a měřicí obvody, Monografie. ČVUT Praha, 1996. (CS)
Haasz, Vl. , Sedláček, M.: Elektrická měření, skripta. ČVUT Praha, 1997. (CS)
Zehnula K.:: Čidla robotů. SNTL Praha, 1999. (CS)
Haasz, Vl. a další: Číslicové měřicí systémy,. ČVUT Praha, 2000. (CS)
Tůmová, O., Čtvrtník, V., Girg, J.:: Elektrická měření - měřicí metody, skripta. ZČU Plzeň, 2000. (CS)

Recommended reading

Kreidl, M., Ďaďo S.: Měřicí převodníky neelektrických veličin. ZČU Praha, 1987. (CS)
Doebelin, E.O.: Measurement systems, Application and Design. Mc Graw Hill New York,, 1990. (EN)
Klementev, I., Kyška, R.: Elektrické meranie mechanických veličin,. Alfa Bratislava,, 1991. (CS)
Svoboda J., Vaculíková P., Vondrák M., Zeman T.: Základy elektromagnetické kompatibility, skripta. ČVUT, Praha, 1993. (CS)
Halsall, F.: Data Communications, Computer Networks and Open Systems. Addison Wesley,, 1994. (EN)
Beran, V., Tůmová, O.: Měření veličin životního a pracovního prostředí. ZČU Plzeň,, 1996. (CS)
Haasz, Vl., Roztočil, J.: Měřicí systémy na bázi IBM-PC, skripta. ČVUT Praha, 1997. (CS)
Haasz V., Sedláček M.:: Elektrická měření. Přístroje a metody, Monografie,. ČVUT Praha, 1998. (CS)
Vaculíková P. a kol.: Elektromagnetická kompatibilita elektrotechnických systémů. Grada Praha, 1999. (CS)

Classification of course in study plans

  • Programme N-P-C-SI Master's

    branch M , 1. year of study, winter semester, compulsory

  • Programme N-K-C-SI Master's

    branch M , 1. year of study, winter semester, compulsory

  • Programme N-P-E-SI Master's

    branch M , 1. year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Exercise

13 hours, compulsory

Teacher / Lecturer